
JUMBOMEM(1) JUMBOMEM(1)

NAME
jumbomem − enable programs to page to remote RAM instead of to local disk

SYNOPSIS
jumbomem [−−help] [−−version] [−−nodes=count] [−−debug=level] [−−pagesize=bytes] [−−heart­
beat=seconds] [−−reserve=bytes|percent%] [−−slavemem=bytes] [−−mastermem=bytes]
[−−pages=count|percent%] [−−rankvar=variable] [−−baseaddr=address|+bytes]
[−−prefetch[=none|next|delta] [−−fast−start] [−−async−evict] [−−memcopy] [−−nre−entries=count]
[−−nre−retries=count] [−−nru−interval=milliseconds] [−−true−nru] [−−mlock] command

DESCRIPTION
JumboMem provides a low-effort solution to the problem of running memory-hungry programs on mem­
ory-starved computers. The JumboMem middleware gives programs access to all of the memory in an
entire cluster, providing the illusion that all of the memory resides within a single computer. When a pro­
gram exceeds the memory in one computer, it automatically spills over into the memory of the next com­
puter. Behind the scenes, JumboMem handles all of the network communication required to make this
work; the user’s program does not need to be modified — not even recompiled — to take advantage of Jum­
boMem. Furthermore, JumboMem does not need administrator privileges to install. Any ordinary user
with an account on a workstation cluster has sufficient privileges to install and run JumboMem.

OPTIONS
jumbomem accepts the following command-line options (in roughly descreasing order of usefulness):

−−help Output a brief usage summary.

−−version
Display the curent version of JumboMem.

−np count, −−nodes=count
Specify the number of nodes to use. count should be at least 3: one master plus two slaves. The
more nodes you have available, the more memory you can use.

−−debug=level
Control the amount of debugging information that JumboMem outputs (default level: 1). See the
NOTES section below for a detailed description of what gets output at each debug level.

−−pagesize=bytes
Designate a logical page size for JumboMem to use. The default is 262144 (256 KB). Applica­
tions with a high degree of spatial locality (i.e., those with largely contiguous data accesses) gen­
erally perform better with large pages. Applications with a low degree of spatial locality
(i.e., those with essentially random data accesses) generally perform better with small pages.

−−heartbeat=seconds
At debug levels 1 and up, output a status message every seconds seconds indicating the number of
major page faults observed by the operating system (should be close to 0) and by JumboMem
(can be low or high, depending on the application).

−−reserve=bytes|percent%
Reserve either bytes bytes or percent% of the available memory for use by the operating system
or other, non-JumboMem processes. The default is 1%. This number should be increased if a
JumboMem process induces a non-negligible number of major OS page faults as these can incur a
significant performance penalty.

−−slavemem=bytes
Specify explicitly the amount of memory that each slave process can serve. While −−reserve
specifies how much memory JumboMem should not use, −−slavemem instead specifies how
much memory JumboMem should use.

−−mastermem=bytes
Specify explicitly the amount of memory that the JumboMem master process is allowed to use
for its local cache of remote pages (and miscellaneous data structures). While −−reserve speci­
fies how much memory JumboMem should not use, −−mastermem instead specifies how much

v2.0 23 November 2009 1

JUMBOMEM(1) JUMBOMEM(1)

memory JumboMem should use.

−−pages=count|percent%
Limit the number of logical pages that JumboMem is allowed to cache locally to either count or
to percent% of the number of page mappings supported by the operating system. The default is
70%. The intention is to further avoid local paging to disk, as this severely degrades the perfor­
mance of a process run with JumboMem.

−−rankvar=variable
Designate an environment variable that distinguishes the master process (rank 0 in the computa­
tion) from the slave processes (all other ranks). The findrankvars MPI program included with
JumboMem suggests variables to use with −−rankvar.

−−baseaddr=address|+bytes
Force JumboMem to allocate its memory region at memory location address or at bytes bytes past
the default location (the end of the program’s data segment rounded up to the nearest JumboMem
page size). JumboMem aborts if it cannot allocate its memory region at the specified address or
address delta. Note that JumboMem will ensure that its memory region begins on a multiple of
the JumboMem page size, rounding up address (or default+bytes) if necessary.

−−prefetch[=none|next|delta
Enable prefetching of remote pages. Most empirical tests of JumboMem indicate that prefetching
in fact degrades performance so the default is none: no prefetching. However, on some net­
works or MPI implementations enabling prefetching may improve performance. Specifying
−−prefetch=next causes the statically subsequent page to be prefetched on every page access.
Specifying −−prefetch=delta or just −−prefetch induces prefetching of the page at the same dis­
tance from the previous fetch. For example, after fetching pages i and i+3 JumboMem would
prefetch page i+6.

−−fast−start
Prevent JumboMem’s initial calibration of reasonable memory sizes. Normally, as part of Jum­
boMem initialization, each processs allocates a large region of memory (the size it expects to be
able to use), accesses all of the data in it, and, if any major OS page faults were detected, reduces
the size of the region and tries again. Doing so helps reduce the number of major OS page faults.
−−fast−start tells JumboMem to skip this step, thereby initializing faster but possibly running
slower. −−fast−start is also good for benchmarking because it ensures that the same memory
sizes are used across runs.

−−async−evict
Evict pages without waiting for the eviction to complete. Most empirical tests of JumboMem
indicate that this does not improve performance so the default is to wait for evictions to complete.
However, on some networks or MPI implementations enabling asynchronous evictions may
improve performance.

−−memcopy
Copy pages into a static communication buffer before transmitting them and copy pages from a
static communication buffer after receiving them. On most networks and MPI implementations
these extra copies degrade performance. However, on some connection-based networks, limiting
the number of registered (a.k.a. pinned) memory regions may compensate for the extra copies in
terms of performance.

−−nre−entries=count
When using NRE (not recently evicted) page replacement, keep track of the count most recently
evicted pages. If a (randomly selected) victim page is one of the count most recently evicted
pages, the algorithm selects a different victim page.

−−nre−retries=count
When using NRE (not recently evicted) page replacement, if a victim page was recently evicted,
the algorithm selects a different victim page. This process repeats count times before the algo­
rithm gives up and evicts a recently evicted page.

v2.0 23 November 2009 2

JUMBOMEM(1) JUMBOMEM(1)

−−nru−interval=milliseconds
When using pseudo-NRU (not recently used) page replacement (the default when using the NRU
page-replacement module), clear all ‘‘accessed’’ bits every milliseconds milliseconds. NRU
replacement schemes favor replacing pages that have not recently been accessed over pages that
have. The default is 5000 (5 seconds).

−−true−nru
Use a true NRU (not recently used) page-replacement scheme instead of the default pseudo-NRU
scheme when running with the NRU page-replacement module. A true NRU scheme distinguishes
between dirty (modified) and clean (unmodified) pages. Clean pages are favored for replacement
because evictions do not require network traffic. Unfortunately, because JumboMem is an
entirely user-level system, keeping track of each page’s modification state requires a significant
amount of extra work per fault, and this typically results in worse performance than simply
assuming that all pages are dirty. Applications that performance significantly more reads than
writes may benefit from −−true−nru.

−−mlock
Attempt to use mlock() to lock memory pages into RAM while in use. Use of this option may
improve performance by reducing the number of major OS page faults. However, it may also lead
the OS to deem the JumboMem master or slaves to be ill-behaved processes and therefore subject
to spontaneous termination by the OS.

A command to run follows the jumbomem options. This can be any sequential program, subject to the
restrictions listed under RESTRICTIONS below.

Options that accept a number of bytes accept the following suffixes to the bytes argument:

k (kilobytes)

Multiply bytes by 1024.

m (megabytes)

Multiply bytes by 1,048,576 (10242).

g (gigabytes)

Multiply bytes by 1,073,741,824 (10243).

If a suffix is not specified, the bytes argument can be specified in either decimal, octal, or hexadecimal
using ordinary C notation: Numbers beginning with 0x are treated as hexadecimal; numbers beginning
with 0 are treated as octal; and all other numbers are treated as decimal.

EXAMPLE
Here’s how to run an interactive Python session with access to 15 machines’ worth of available RAM
(55 GB on the cluster on which this was tested):

jumbomem −np 16 python −i

Note that we specify −np 16 because we always need one extra machine to serve as the master, which
actually runs the application; the other machines in the cluster function as memory servers. The Python
interpreter’s −i option forces an interactive session. Without it, Python may conclude that it’s running in
noninteractive mode (because it was launched from some job-launching daemon such as mpirun’s) and not
display a prompt, although it will otherwise work as normal.

ENVIRONMENT
Most of the options to the jumbomem script merely set environment variables that the JumboMem run­
time library (libjumbomem.so) reads and processes. The following environment variables are currently rec­
ognized:

JM_ASYNCEVICT
Corresponds to the −−async−evict option when set to 1; to the default case when set to 0.

JM_BASEADDR

Corresponds to the −−baseaddr option.

v2.0 23 November 2009 3

JUMBOMEM(1) JUMBOMEM(1)

JM_DEBUG

Corresponds to the −−debug option.

JM_HEARTBEAT

Corresponds to the −−heartbeat option.

JM_LOCAL_PAGES

Corresponds to the −−pages option.

JM_MASTERMEM

Corresponds to the −−mastermem option.

JM_MEMCPY
Corresponds to the −−memcopy option when set to 1; to the default case when set to 0.

JM_MLOCK

Corresponds to the −−mlock option.

JM_NRE_ENTRIES

Corresponds to the −−nre−entries option.

JM_NRE_RETRIES

Corresponds to the −−nre−retries option.

JM_NRU_INTERVAL

Corresponds to the −−nru−interval option.

JM_NRU_RW
Corresponds to the −−true−nru option when set to 0; to the default case when set to 1.

JM_PAGESIZE

Corresponds to the −−pagesize option.

JM_PREFETCH

Corresponds to the −−prefetch option.

JM_RANKVAR

Corresponds to the −−rankvar option.

JM_REDUCEMEM
Corresponds to the −−fast−start option when set to 0; to the default case when set to 1.

JM_RESERVEMEM

Corresponds to the −−reserve option.

JM_SLAVEMEM

Corresponds to the −−slavemem option.

Note that unlike the corresponding command-line options, environment variables that specify a number of
bytes do not accept a k, m, or g suffix.

FILES
libjumbomem.so

The core part of JumboMem. jumbomem loads libjumbomem.so into a process’s memory using
the dynamic linker’s LD_PRELOAD envionrment variable. libjumbomem.so then installs its own
memory-allocation and fault-handling routines.

$HOME/.jumbomemrc
A configuration file used by jumbomem. After setting default values for various environment
variables, jumbomem executes the user’s $HOME/.jumbomemrc file, which generally contains
code to set environment variables (see ENVIRONMENT above) but can in fact include arbitrary
Bourne-shell code. For example, putting JM_DEBUG=2 in your $HOME/.jumbomemrc changes
the default debug level to 2. Note that jumbomem automatically exports all shell variables
whose name begins with JM_ so an explicit export statement is unnecessary.

v2.0 23 November 2009 4

http:libjumbomem.so
http:libjumbomem.so
http:libjumbomem.so

JUMBOMEM(1) 	JUMBOMEM(1)

/proc/sys/vm/max_map_count
On Linux, this ASCII file specifies the maximum number of memory-mapped regions a process
can allocate. It typically defaults to 65,536. JumboMem’s minimum logical page size is calcu­
lated as the total address-space size divided by the maximum number of memory-mapped
regions. Hence, a larger number stored in /proc/sys/vm/max_map_count implies greater flexibil­
ity in selecting a JumboMem logical page size. System administrators may therefore want to
write a large number to /proc/sys/vm/max_map_count on each node in their cluster to improve
performance on applications that exhibit poor spatial locality. (See the description of −−pagesize
in the OPTIONS section.)

CAVEATS
Buggy programs that may have happened to work with smaller amounts of memory will likely fail when
run with large amounts of JumboMem memory. For example, programs that use 32−bit integers to keep
track of the number of elements in a data structure will fail when run with 232 (or even 231) elements; pro­
grams that are sloppy with pointer arithmetic (e.g., copying a 64−bit void * into a 32−bit int and back
again) will fail when those pointers pass the 32−bit boundary. Check your programs before trying to run
them with JumboMem!

BUGS
Probably plenty. Please report any you can reproduce to the author. (See ‘‘AUTHOR’’ below.)

RESTRICTIONS
While JumboMem works well for a number of programs it does not work well for all programs:

•	 JumboMem cannot handle processes that fork() other processes. This is probably the biggest limi­
tation on JumboMem’s utility.

•	 Only programs that use 64−bit pointers can take advantage of the extra memory provided by Jum­
boMem.

•	 JumboMem manages only memory dynamically allocated with malloc() and related functions.
Statically declared data structures are not distributed across the network.

NOTES
Tr oubleshooting

As a user-level program, JumboMem has to rely on a substantial amount of trickery to convince the target
program that vast amounts of memory are available to it. Unfortunately, different programs react differ­
ently to all this trickery, which can lead to crashes, jumbomem error messages (e.g., mmap() failed
to allocate number bytes at or above address address), or other problems.

Sometimes it helps to to experiment with using different base addresses for JumboMem’s global address
space. (See −−baseaddr in the OPTIONS section above.) The default is to start the global address space
right after the program’s data segment. This has the advantage of serving as a crutch for buggy programs
by enabling as much data as possible to lie beneath the 32−bit boundary. The disadvantage is that some
programs expect to be able to manage all of the data up to that boundary and consequently end up fighting
for control with JumboMem. Try −−baseaddr=4g and see if that gets the problematic program to work.

A common configuration mistake is to omit or incorrectly specify the LAUNCHCMD command such that
jumbomem launches all slave processes on the same node, exhausting that node’s memory. If jumbomem
appears to induce excessive disk paging or unexpectedly runs out of memory, it may be worth scrutinizing
the LAUNCHCMD variable in custom.py. For quick testing you can edit the launchtemplate line in the
jumbomem script; edit custom.py and rebuild JumboMem when a suitable LAUNCHCMD is found.

Other problems with JumboMem may be deciphered by increasing jumbomem’s debug level. See
−−debug in the OPTIONS section above and Debug Levels below.

v2.0 	23 November 2009 5

http:custom.py
http:node�smemory.If

JUMBOMEM(1) JUMBOMEM(1)

Debug levels

At debug level 0, jumbomem outputs no additional information. At level 1 (the default), jumbomem out­
puts at the start of the run an ‘‘initializing’’ message and the values of some key JumboMem environment
variables (including those set by the jumbomem script). At the end of the run jumbomem outputs an
‘‘exiting’’ message. Level 2 increases jumbomem’s verbosity to include a large amount of configuration
detail during initialization and fault statistics during finalization. At level 3, each slave process additionally
outputs configuration information and termination statistics. In addition, jumbomem announces every
major increase in the amount of memory managed by jumbomem (i.e., every invocation of
morecore()). jumbomem output becomes very verbose at level 4, at which point every page fetch,
eviction, and permission change and every thread freeze/thaw request is output. Finally, at debug levels 5
and up, jumbomem outputs every entry to and exit from a memory-allocation function such as malloc()
and free() and every thread freeze/thaw response.

Heartbeat output

The JumboMem heartbeat value (set by −−heartbeat or JM_HEARTBEAT) is checked only on JumboMem
page faults. Consequently, an application that rarely page faults will not regularly output the heartbeat sta­
tus message.

AUTHOR
Scott Pakin, pakin@lanl.gov

COPYRIGHT AND LICENSE
Copyright (C) 2009 Los Alamos National Security, LLC

This material was produced under U.S. Government contract DE−AC52−06NA25396 for Los Alamos
National Laboratory (LANL), which is operated by Los Alamos National Security, LLC for the U.S. Depart­
ment of Energy. The U.S. Government has rights to use, reproduce, and distribute this software. NEITHER
THE GOVERNMENT NOR LOS ALAMOS NATIONAL SECURITY, LLC MAKES ANY WARRANTY,
EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. If software is
modified to produce derivative works, such modified software should be clearly marked so as not to confuse
it with the version available from LANL.

Additionally, this program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; version 2.0 of the License.
Accordingly, this program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

v2.0 23 November 2009 6

mailto:pakin@lanl.gov

