Cool Supercomputing: Keepin’ it Real

Scott Pakin
Applied Computer Science Group
Los Alamos National Laboratory
14 November 2012
Questions from the Organizers

- What is good and bad about the current state of the art in tools and techniques for optimizing power on large-scale systems?
- How much more needs to be done to make power a first-class citizen for future extreme-scale systems?
Current State of the Art

Good
- Lots of work being done to manage power throughout the system
- Algorithms, compilers, job schedulers, operating systems, architecture

Bad
- Most of this work is totally oblivious to reality
The Wrong Way to Think about Power

- **Researcher:** “If you use my {run-time system, compiler, language, etc.}, your application will draw $x\%$ less power $y\%$ of the time and degrade performance by only $z\%$”

- **Financial analyst (gov’t):** “Our budgets don’t carry over across fiscal years; drawing $x\%$ less power doesn’t save us any money”

- **Facilities engineer:** “We have to allocate infrastructure for worst-case usage; $y < 100\%$ is useless”

- **User:** “What?!? You’re degrading my performance by $z\%$. What did I ever do to you?”
The Disconnect

- Users and application developers don’t care about power efficiency
 - They don’t pay for power
 - They barely know how to handle scalability, let alone programming for power efficiency
 - It’s not worth their time to restructure code for power efficiency
 - Preferred metric: ED^∞_P

- Race-to-halt does better than most researchers give it credit for
 - DRAM, power supplies, I/O devices, various other components draw power whether used or not
 - Implication is that energy is minimized when these are used for as little time as possible
Race to Halt is Hard to Beat

- **Power data for xRAGE on a 150-node Sandy Bridge + InfiniBand cluster**
 - 109 W/node idle vs. 332 W/node at max. perf.

- **Best one can do**
 - Reduce power by 2/3
 - Increase run time by <2/3 to come out ahead energy-wise
 - Possible? Doubtful

- **Change of goals**
 - Reduce baseline power draw
 - Get most performance for a *given* power budget
The Right Way to Think about Power

Peak performance (Top500 Rmax in Tflops/s) vs. Power budget (kW)

- Peak performance (Top500 Rmax in Tflops/s) ranges from 0 to 18,000.
- Power budget (kW) ranges from 0 to 12,000.

Graph shows an increasing trend as power budget increases.
Making Power a First-Class Citizen

- **Necessary pain at extreme scale**
 - Applications are granted a maximum power draw for the course of their execution

- **Pain relief (naproxen)**
 - Give application developers the mechanisms needed to stay within their budget
 - Libraries, language constructs, etc.

- **Pain relief (homeopathic)**
 - Throttle performance if application tries to exceed its power cap
 - *Bonus points*: Coschedule high- and low-power applications
 - (You can go over budget if you find a patsy who can stay under budget)
Closing Thoughts

“Gotta give us what we want. Gotta give us what we need. …
To revolutionize make a change, Nothin's strange …
What we need is awareness; we can’t get careless. …
Lemme hear you say, Fight the power.”

— Public Enemy, Fight the Power