
Projection�Based

Program Analysis

Kei Davis� M�Sc� �Oxon��

A Thesis

Submitted for the Degree of

Doctor of Philosophy

at the Department of Computing�

University of Glasgow

February ����

c� Kei Davis ����

Abstract

Projection�based program analysis techniques are remarkable for their ability to give

highly detailed and useful information not obtainable by other methods� The �rst

proposed projection�based analysis techniques were those of Wadler and Hughes for

strictness analysis� and Launchbury for binding�time analysis	 both techniques are

restricted to analysis of �rst�order monomorphic languages� Hughes and Launchbury

generalised the strictness analysis technique� and Launchbury the binding�time analy�

sis technique� to handle polymorphic languages� again restricted to �rst order� Other

than a general approach to higher�order analysis suggested by Hughes� and an ad hoc

implementation of higher�order binding�time analysis by Mogensen� neither of which

had any formal notion of correctness� there has been no successful generalisation to

higher�order analysis�

We present a complete redevelopment of monomorphic projection�based program

analysis from �rst principles� starting by considering the analysis of functions
rather

than programs� to establish bounds on the intrinsic power of projection�based anal�

ysis� showing also that projection�based analysis can capture interesting termination

properties� The development of program analysis proceeds in two distinct steps�

�rst for �rst�order� then higher order� Throughout we maintain a rigorous notion of

correctness and prove that our techniques satisfy their correctness conditions�

Our higher�order strictness analysis technique is able to capture various so�called data�

structure�strictness properties such as head strictness
the fact that a function may

be safely assumed to evaluate the head of every cons cell in a list for which it evaluates

the cons cell� Our technique� and Hunt�s PER�based technique
originally proposed

at about the same time as ours�� are the �rst techniques of any kind to capture such

properties at higher order� Both the �rst�order and higher�order techniques are the

�rst projection�based techniques to capture joint strictness properties
for example�

the fact that a function may be safely assumed to evaluate at least one of several

arguments� The �rst�order binding�time analysis technique is essentially the same as

Launchbury�s	 the higher�order technique is the �rst such formally�based higher�order

generalisation� Ours are the �rst projection�based termination analysis techniques�

and are the �rst techniques of any kind that are able to detect termination properties

such as head termination
the fact that termination of a cons cell implies termination

of the head�

A notable feature of the development is the method by which the �rst�order analysis

semantics are generalised to higher�order� except for the �xed�point constant the

higher�order semantics are all instances of a higher�order semantics parameterised by

the constants de�ning the various �rst�order semantics�

Acknowledgements

Thanks are due to several individuals and institutions	 in order of their �rst involve�

ment�

� J� Mack Adams� for my �rst exposure to FP� and for catalysing my move to

Oxford	

� Philip Wadler� for my �rst involvement in FP research
at Oxford�� and acting

as �rst supervisor
at Glasgow�	

� John Hughes� for suggesting that I come to Glasgow� helping to get me here�

and acting as second supervisor	

� Committee of Chancellors and Vice Principals of the Universities of

the United Kingdom� for �nancial support
Ref� ORS���������	

� Snell Committee of the University of Glasgow� for �nancial support	

� John Launchbury� for his open�door policy� FP wisdom� and sound advice	

� Keith Van Rijsbergen� for his benign in�uence on postgraduate welfare�

Kei Davis

February ����

Contents

� Introduction �

��� Overview �

��� Program Analysis �

��� Strictness Analysis �

����� Earlier work �

��� Termination Analysis �

����� Earlier work ��

��� Binding�time Analysis ��

����� Earlier work ��

� Domains� Functions� Projections� and Predicates ��

��� Domains ��

��� Monotonicity� Continuity� and Inclusivity � � � � � � � � � � � � � � � � ��

��� Projections and Embeddings ��

��� Domain Construction ��

��� Recursively De�ned Domains ��

����� De�ning continuous functions � � � � � � � � � � � � � � � � � � ��

����� De�ning inclusive predicates ��

����� A simple recursively�de�ned predicate � � � � � � � � � � � � � � ��

����� A more general approach ��

� Analysing Functions with Projections ��

��� Backward Strictness Abstraction ��

����� Analysis of lifted functions ��

����� Stability and backward analysis � � � � � � � � � � � � � � � � � ��

����� Functions of several arguments � � � � � � � � � � � � � � � � � ��

��� Forward Strictness Abstraction ��

����� Relating forward and backward strictness abstraction � � � � � ��

��� Forward Termination Abstraction ��

����� Analysis of lifted functions ��

��� Backward Termination Abstraction ��

��� Discussion and Related Work ��

iii

Contents iv

� Source Language and Standard Semantics ��

��� Source Languages ��

����� The lazy lambda calculus ��

����� Expression language ��

����� Typing ��

��� Semantics ��

����� Domain de�nitions ��

����� Expression semantics ��

����� A generic expression semantics � � � � � � � � � � � � � � � � � � ��

����� Relating expression semantics � � � � � � � � � � � � � � � � � � ��

��� Standard Semantics ��

����� Type semantics ��

����� Expression semantics ��

����� Operational semantics ��

����� Interpretation of projections ��

��� Lifted Semantics ��

����� Type semantics ��

����� Expression semantics ��

����� Operational interpretation of lifting � � � � � � � � � � � � � � � ��

����� Operational interpretation of projections � � � � � � � � � � � � ��

����� Unboxed types ��

	 First
Order Analysis ��

��� Abstracting Dependency on the Environment � � � � � � � � � � � � � ��

��� Strictness Analysis ��

����� First approach to �rst�order analysis � � � � � � � � � � � � � � ���

����� Abstraction of projection domains � � � � � � � � � � � � � � � � ���

����� Second approach to �rst�order analysis � � � � � � � � � � � � � ���

����� Finite projection domains ���

����� More on case expressions ���

����� More on Wadler and Hughes� technique � � � � � � � � � � � � � ���

��� Binding�time Analysis ���

����� First�order analysis ���

����� Abstraction of projection domains � � � � � � � � � � � � � � � � ���

����� Finite projection domains ���

����� Examples of analysis ���

��� Termination Analysis ���

����� Abstraction ���

����� First�order analysis ���

��� Summary and Related Work ���

��� Higher order� ���

Contents v

� Higher
Order Analysis �	�

��� Domain factorisation ���

����� Data dependency ���

����� Factored semantics ���

��� Data�dependency semantics ���

����� Semantics of expressions ���

����� Implications of the relation ���

����� Examples ���

����� Lifted data�dependency semantics � � � � � � � � � � � � � � � � ���

��� Strictness Analysis ���

����� Relation between S and B semantics � � � � � � � � � � � � � � ���

����� Examples of analysis ���

����� Abstraction ���

����� Better semantics for case� ���

��� Binding�time Analysis ���

����� Abstraction ���

��� Termination Analysis ���

����� Abstraction ���

��� Summary and Related Work ���

����� Strictness analysis ���

����� Binding�time analysis ���

����� Termination analysis ���

� Conclusion ���

��� Summary ���

��� Loose Ends ���

��� Polymorphism ���

��� Implementation ���

��� Other Applications of the General Approach � � � � � � � � � � � � � � ���

��� Projections for Program Analysis ���

Bibliography �
�

Chapter �

Introduction

This thesis presents new techniques for strictness analysis� termination analysis� and

binding�time analysis for higher�order monomorphically�typed non�strict functional

languages� Our concept of strictness is su�ciently broad that strictness analysis

subsumes liveness analysis� The analysis techniques are developed in a common

framework using projections as the basic abstract values�

We start by considering the analysis of functions
rather than programs� using projec�

tions� establishing results on the intrinsic power of projection�based analysis� thereby

establishing bounds on what could be hoped to be achieved by projection�based pro�

gram analysis� Additionally� we demonstrate some properties of the analyses that

are not only theoretically interesting but practically useful in that they enable more

e�cient implementation of program analysis techniques based on them�

Program analysis is developed in two stages� �rst for �rst�order programs� then higher

order� This gives a neat factorisation of the development of the higher�order tech�

niques� allowing much of the machinery to be developed in the considerably simpler

setting of �rst�order analysis�

Besides laying a theoretical foundation for the analysis techniques there were three

further goals of this work� First� there should be formal statements of what it means

for the results of program analysis to be correct� and some proof that the techniques

produce correct results� These statements take the form of logical relations between

standard and analysis semantics	 proving correctness requires little more than cleri�

cal work because the analysis techniques are� in e�ect� derived from the correctness

conditions� Second� there should be some indication of how strong the analysis tech�

niques are	 for strictness analysis at least we can give a de�nite answer� Third� the

development of the analysis techniques should be reasoned and methodical	 here the

reader will have to judge for himself�

�

CHAPTER �� INTRODUCTION �

��� Overview

The remainder of this chapter serves to describe how earlier work has led up to ours	

comparable or �competing� work will be discussed retrospectively� Chapter � reviews

the mathematics on which our work is based� elementary domain theory including

the construction of recursively�de�ned domains and recursively�de�ned predicates�

Chapter � develops the theory of projection�based analysis of functions� Chapter �

de�nes the source language and its standard semantics� Chapter � develops the �rst�

order analysis techniques� Chapter � develops the higher�order analysis techniques�

Chapter � concludes�

��	 Program Analysis

The myriad proposed techniques for program analysis do not appear to admit to

any simple and precise taxonomic classi�cation� but to give some perspective it is

useful to identify three general approaches� A language normally has associated

some standard type system and type inference
sometimes called the
standard� static

semantics� which for the purpose of this discussion includes �no type system� and

�no type inference��� denotational semantics� and operational semantics
embodying

the execution or reduction strategy�� each of which assigns standard behaviours or

properties to programs� An analysis technique is typically based on a non�standard

version of the static� denotational� or operational semantics� from which standard

behaviour or properties may be inferred� We give an example of each� A classic

example of a non�standard denotational semantics
or non�standard interpretation� is

the rule of signs for arithmetic� the non�standard semantics maps numerals to their

signs and arithmetic operations to corresponding operations on signs� An example

of a non�standard type system is Wadler�s linear type system� which may be used to

infer operational behaviour for the purpose of update analysis for functional languages

�Wad���� Non�standard operational semantics typically simulate some aspect of the

reduction process� in practice with some simpli�cation to avoid in�nite reduction� For

example� peephole optimisation of assembly� or machine�level code typically simulates

usage of registers and stacks�

Analysis techniques based on non�standard denotational semantics may be classi�ed

according to the attributes of the source language
or attributes of the source language

on which they rely�� in particular whether the source language is �rst order or higher

order	 whether it is untyped� monomorphically typed� or
Hindley�Milner �Mil����

CHAPTER �� INTRODUCTION �

polymorphically typed	 and whether it provides only so�called �at data types
such

as integers� characters� and booleans� or non��at data types
such as lists and trees��

Our work falls precisely in the category of non�standard interpretation� Unless stated

otherwise� all analysis techniques mentioned are by non�standard interpretation�

��
 Strictness Analysis

In its simplest form strictness analysis seeks to determine whether a function f � de�

noted by some programming�language expression f� is strict� that is� if f � � ��

Throughout this thesis we use the typewriter font� e�g� �f � to denote syntactic ob�

jects� and italics� e�g� �f � to denote semantic objects�� The motivation for such analy�

sis is based on a correspondence between the operational behaviour of expressions and

the semantic values they denote� Again taking the simplest case� the correspondence

is that precisely those expressions whose evaluation fails to terminate have value ��

Then if f � � � we may deduce that non�termination of the argument of f implies

non�termination of the application of f to its argument� hence that the argument may

be safely evaluated before or in parallel with f without introducing non�termination

where it would not have occurred otherwise� This is often expressed by the state�

ment �f
or f� requires
or demands� its argument� meaning that for the result

to be de�ned
terminate� it is necessary that the argument be de�ned
terminate��

Thus strictness analysis enables safe modi�cation of evaluation order� Independent of

whether the implementation is parallel or serial� Peyton Jones and Partain �PJP���

describe three distinct compile�time optimisations enabled by strictness analysis� the

elimination of creation� update� and garbage collection of closures	 the manipulation

of unboxed rather than boxed values	 and the elimination of redundant evaluations�

Though it has long been �known� that if an expression denotes a strict function then it

is safe to evaluate its argument �rst or in parallel
e�g� �Myc����� Burn claims �Bur��b�

to be the �rst to prove it in his thesis �Bur��b�� The point is� to formally justify the

safety of modi�cation of evaluation order based on semantic analysis requires a for�

mal operational model with a formal relation to the semantic model� For example�

Lester �Les��� provides these models� their correspondence� and proofs of safety for

changes in evaluation order based on strictness information for a state�of�the�art im�

plementation technology for lazy functional languages
the G�machine�	 Burn and

Le M!etayer �BM��� consider the problem for a �simple�minded compiler for lazy

functional languages� In this thesis operational concepts are introduced for intuitive

purposes only	 we are only formal about
denotational� semantics� making standard

CHAPTER �� INTRODUCTION �

assumptions
described as needed� about the operational model and its relation to

the semantics�

The notion of strictness and the corresponding operational deductions can be gen�

eralised� If f denotes f and f is a function on pairs such that f
x��� � � for all

x we say that f is strict in in the second component of its argument
or its second

argument� thinking of the curried version of f�� the operational conclusion being that

it is safe to evaluate the second argument early� If f
���� � � the operational

conclusion is that the two arguments may be safely evaluated in parallel until one or

the other terminates� before or in parallel with evaluation of f� In this case f is said

to be jointly strict in its two arguments	 the classic example of a function with joint

strictness properties is cond
b� x � y� � if b then x else y � which is jointly strict in

x and y� If f is a function on lists such that the result of f is unde�ned when its

argument is a partial or in�nite list f is said to be tail strict 	 for example� the usual

length function on lists is tail strict� Operationally� if f denotes a tail�strict function

it is safe to evaluate the entire spine of its argument before or in parallel with f�

A particularly important form of strictness is head strictness� Operationally� a func�

tion on lists is head strict if� whenever it evaluates a cons cell� it is certain to evaluate

the head �eld of the cons cell� De�ne function H on lists by

H � � � �

H � � � � � �

H
� � xs� � � �

H
x � xs� � x �
H xs�� x �� � �

where � � denotes the empty list and in�x � denotes the cons operation� Then H is

the identity on �nite� partial� and in�nite lists not containing bottom elements� but

truncates other lists at their �rst bottom element� For example�

H
� � � � � � � � � � � �� � � � � � � � � �

Semantically� function f is head strict if f � f � H� For example� a function that

searches a list from its beginning� element by element� for a particular value will be

head strict� Head strictness is important because in practice many functions have

this property and its detection would appear to enable a compile�time optimisation�

arguments of head�strict functions need not delay
build closures for� head elements�

Head strictness is also important because it is a special case
for lists of atomic values�

of the strictness property of any function that performs a depth��rst traversal of a

data structure� In turn� depth��rst traversal is a common pattern of computation	 it

is precisely that of the output driver for real�world functional languages� as well as

being fundamental to the implementation of many graph algorithms �KL����

CHAPTER �� INTRODUCTION �

Our last general observation is that none of the strictness properties described are

decidable� determining any of them is reducible to the halting problem� Thus for any

algorithm
terminating procedure� for determining strictness properties of programs

there is always some notion of safe approximation	 for simple strictness an analyser

will typically return either �de�nitely strict� or �unknown�� rather than �de�nitely

strict� or �de�nitely not strict�� where �unknown� safely approximates all possibilities�

Liveness analysis �ASU��� seeks to determine which expressions are dead
de�nitely

do not contribute to the �nal result of a computation� and which are live
possibly

contribute to the �nal result� Liveness analysis enables dead code elimination

not generating code for expressions whose values do not contribute to the �nal re�

sult� Considering functions� in the simplest case liveness analysis seeks to determine

whether a function de�nitely does not require its argument� or possibly requires its

argument	 contrast with simple strictness analysis which seeks to determine whether

a function de�nitely requires its argument� or possibly requires its argument� The

concept of liveness can be generalised to the determination of which parts of a func�

tion�s argument are not required given that given that parts of the result are not

required�

If we wanted to be more precise we could consistently distinguish strictness properties

de�nite demands� from liveness properties
de�nite absence of demands�� but as is

common these will be lumped together as strictness properties	 beyond this section

there will be no further explicit mention of liveness properties or analysis�

Compile�time optimisation is not the only use for strictness and liveness analyses�

Wadler �Wad��� and Sands �San��a� San��b� San��c� demonstrate that strictness in�

formation is useful in analysing the time complexity of programs� Roughly� strictness

information is used to determine lower bounds and liveness information upper bounds	

Sands �San��c� gives a good overview� Launchbury �Lau��a� shows that strictness in�

formation is useful in inductive proofs that programs satisfy certain properties�

����� Earlier work

Following we give a brief overview of the strictness analysis techniques leading

up to ours� We assume the source language to be
sugared� lambda calculus

with constants� for which the reduction strategy is normal�order reduction to weak

head normal form
WHNF�� that is� non�strict or lazy
non�strict with sharing�

functional languages� Complete development of these concepts may be found in

�Bar��� Abr��� Ong��� PJ���� This restriction admits most
if not all� real�world

CHAPTER �� INTRODUCTION �

lazy purely�function languages� including Miranda� �Tur��� Tur���� Orwell �Wad����

Lazy ML �Aug��� AJ���� Concurrent Clean �NS"��� SN"���� and Haskell �HPW����

The �rst strictness analysis technique for non�strict functional languages was pro�

posed by Mycroft �Myc���� His non�standard interpretation is restricted to �rst�order

monomorphic languages with �at domains� using the two�point non�standard domain

f���g to distinguish two degrees of de�nedness at each base type� � representing

standard � and � representing all standard values�

Burn� Hankin� and Abramsky �BHA��� generalised Mycroft�s technique to higher or�

der� More than that� they provided a general framework for abstract interpretation

a restricted form of non�standard interpretation
which does not �x the particular

choice of abstract domains
an excellent overview is given in �AH��b��� In this frame�

work Wadler �Wad��� introduced the now well�known and closely examined
e�g�

�NN���� so�called �four�point abstract list domain	 more precisely� he introduced

double�lifting as an abstract list domain constructor� Given abstract list element

domain D� the abstract list domain comprised �� representing the completely un�

de�ned list	 lift �� all partial and in�nite lists	 and for each v � D element lift� v �

representing all partial and in�nite lists� and all �nite lists for which the least ab�

stract representation of the list elements is v� yielding four points when D is Mycroft�s

two�point domain� This innovation made possible the detection of tail strictness and

head�and�tail strictness� f is tail strict if it maps every list represented by lift � to

�� and head�and�tail strict if it maps every list represented by lift� � to �
further

examples of analysis are given in �DW����� Wadler suggests that the construction gen�

eralises to other recursive data types	 Jensen �Jen���� and to a lesser degree Seward

�Sew���� develop this further�

Unfortunately� Wadler�s construction couldn�t capture head strictness� At the time

suspicion was growing that head strictness was not a property that could be captured

in the BHA framework regardless of the choice of abstract domains� prompting further

exploration outside the BHA framework�
This impossibility was shown much later

by Kamin �Kam�����

The key to detecting properties such as head strictness was the use of objects that

represented degrees of required or demanded evaluation of expressions� and the re�

�ection in the analysis techniques themselves that such demands naturally propagate

backward� that is� from the root of an expression to the leaves� The �rst such technique

was proposed by Johnson �Joh���� Two demands were distinguished� evaluation to

WHNF and unknown� The technique was de�ned for higher�order polymorphically�

�Miranda is a trademark of Research Software� Ltd�

CHAPTER �� INTRODUCTION �

typed languages and was implemented as part of the Lazy ML compiler� giving en�

couraging results on the practical value of strictness analysis� the compiler with the

strictness analyser could compile itself faster than the compiler without could compile

itself	 in two senses strictness analysis more than paid for its cost�

Wray�s strictness analysis technique �Wra��� FW��� introduced two more demands�

no demand and unsatis�able demand� There demands take the form of non�standard

types and analysis is by type inference� This appears to be the �rst strictness analysis

technique based on non�standard typing
later methods based on non�standard typing

include Kuo and Mishra�s �KM���� Leung and Mishra�s �LM���� and Jensen�s �Jen���

Jen����� Wray�s technique is also interesting because the algorithm for type inference

uses both forward
from leaves of expression to root� and backward information �ow

expressed in a functional style of implementing attribute grammars later described

by Johnson �Joh���� An earlier version of this technique was implemented as part of

the Ponder compiler �Fai��� FW���� giving signi�cant speedup �Fai����

Hughes �Hug��� encoded demands as contexts
idempotent functions approximat�

ing the identity� He introduced a context for evaluating the entire spine of a list�

and described a strictness�analysis technique for a �rst�order monomorphically�typed

language�

Burn �Bur��a� Bur��b� Bur��a� Bur��b� Bur��c� introduced evaluation transformers

to encode four demands� unknown� evaluation to WHNF� evaluation of the spine

of a list� and evaluation of every element of a list to WHNF
necessarily including

evaluation of the spine�� He used the results of BHA strictness analysis using Wadler�s

four�point abstract domain to formally justify the backward propagation of evaluation

transformers� The technique is applicable to higher�order monomorphically�typed

languages�

Hughes �Hug��a� introduced the head�strictness context corresponding to the function

H� He also suggested an approach to analysis of higher�order languages� and hypothe�

sised a technique for polymorphic languages using polymorphic contexts� In �Hug��b�

he took a di�erent approach� there contexts are abstractions of continuations�

Hall and Wise �HW��� gave an analysis technique using strictness patterns to encode

demands� The emphasis of their work was on discovering regular patterns of compu�

tation� for example� not just head strictness
strictness in every head
but strictness

in every second head� and so on� Strictness patterns� like contexts� are idempotent�

Wadler and Hughes �WH��� formalised contexts as domain projections� precisely those

functions which� like contexts� are idempotent and approximate the identity� such as

CHAPTER �� INTRODUCTION �

the function H� They presented a projection�based analysis technique for �rst�order

monomorphic languages that could not only detect such properties as head strictness�

but had a formal safety condition for the results of analysis� putting the work on a

much more sound theoretical footing than the earlier work� Wadler and Hughes�

work is very much the starting point for ours� we will reformulate
an analog of�

their analysis technique from �rst principles� and generalise it to higher order�

With the incorporation of �no demand�� strictness analysis e�ectively subsumes live�

ness analysis� Nielson and Nielson �NN��� Nie��� gave a liveness analysis technique

and showed how it enables compile�time optimisation� Jones and Le M!etayer �JM���

gave a liveness analysis technique
which they called necessity analysis� designed to

enable reuse of dynamically allocated storage without intervention by the garbage

collector
so�called compile�time garbage collection�

In the area of strictness analysis theory has tended to lead practice� Part of the reason

is simply that strictness analysis is an extra� it is not an essential part of the com�

pilation process� A more fundamental reason is that though information provided by

more sophisticated techniques� such as the presence of head or tail strictness� seems as

though it ought to be practically exploitable� in reality it is not always clear how to do

so� Burn �Bur��a� considers the problem of using the results of projection�based anal�

ysis in compilation� but for a limited class of projections not including H	 in �Bur��b�

he makes clear that his evaluation transformer model cannot encode H� Recently

Hall �Hal��� has been investigating how to make e�ective practical use of such strict�

ness information� with real�world measurements of change in performance	 Howe and

Burn �HB��� and Burn and Finne �BF��� have experimented with evaluation trans�

formers in state�of�the�art implementations
the Spineless Tagless G�Machine and the

Spineless G�Machine� respectively� with some good results�

Where practice has led theory is in the analysis of polymorphic languages� Many of the

analysis techniques proposed and implemented for polymorphic languages appear to

apply equally to untyped languages� that is� they make no essential use of polymorphic

type information	 of those already mentioned these include Johnson�s �Joh���� Hughes�

�Hug���� and Wray�s �Wra��� FW���� The �rst true polymorphic technique
one

that made essential use of polymorphic type information
is Abramsky�s �Abr����

He de�nes a property of a polymorphically�typed expression to be polymorphically

invariant if that property holds for all monotyped instances of the expression� or

none� He shows that strictness as determined by a particular analysis technique for

a higher�order monomorphic language is polymorphically invariant� Abramsky and

Jensen �AJ��� strengthen the result by showing semantic
technique�independent�

polymorphic invariance of strictness for a polymorphic higher�order language� Though

CHAPTER �� INTRODUCTION �

this allows the strictness of a polymorphic function to be determined at any convenient

instance� in actual program analysis it may still be necessary to perform strictness

analysis at more than one instance
e�g� as illustrated by Baraki �Bar����� What would

be ideal is a way of determining� or at least safely approximating� strictness properties

at all higher instances from those of the simplest� Hughes �Hug��� shows how this may

be done for �rst�order polymorphic functions	 Baraki and Hughes �BH��� and Baraki

�Bar��� Bar��� extend this to higher order� Seward �Sew��� successfully employed

Baraki�s theory in a strictness analyser� making possible reasonably good analysis of

instances of polymorphic functions practically impossible to analyse directly�

We have mentioned strictness analysis techniques based on non�standard typing and

non�standard denotational semantics	 it is worth pointing out that there exists a

method based on a non�standard operational semantics� N#ocker �N#oc��� describes

a strictness analyser based on abstract reduction �vE"��� which is implemented in

the Concurrent Clean compiler� giving signi�cant improvement in performance� The

technique� as described and implemented� is limited to determining simple strictness�

tail strictness� and head�and�tail strictness in each argument�

��� Termination Analysis

Like strictness analysis� the nominal goal of termination analysis is to determine

when it is safe to evaluate an expression before it is actually required� If a function�s

argument is certain to terminate then it is safe to evaluate it before or in parallel

with the function� regardless of whether the function actually requires its argument�

In practical terms there is the danger that the function would never evaluate its

argument and that the cost of evaluating it exceeds the savings
in time or space�

of passing it unevaluated� In practice� termination analysis may be combined with

an operation count analysis which determines an upper bound on the number of

operations required to evaluate an expression� so that only arguments that require a

small number of operations to evaluate are passed by value�

Termination analysis might be even more useful in a parallel implementation with

speculative evaluation� Typically� a speculative evaluation process is initiated when

processors are not needed for mandatory evaluation� and there is some mechanism

for changing the status of a speculative process� it may be upgraded to a mandatory

process� or stopped or killed if its processor
s� become needed for mandatory evalua�

tion� Making this bookkeeping e�cient is one of the major problems in implementing

speculative evaluation �Mat���� However� when speculative processes are known to

CHAPTER �� INTRODUCTION ��

terminate this mechanism is no longer necessary
though it may still be desirable��

Termination analysis has received little attention compared to strictness analysis�

partly because it tends to give poor results� Very brie�y� the problem is that to

show that a program terminates often requires an inductive proof� and non�standard

interpretations are not theorem provers� For example� to show that the usual factorial

function on natural numbers terminates requires numerical induction	 showing that

the usual length function on lists terminates for �nite lists requires induction on list

structure� Though our analysis techniques do not incorporate any notion of inductive

proof
as does e�g� Holst�s quasi�termination analysis technique �Hol����� they do

break new ground� they yield potentially useful forms of information not previously

available� for example� head termination� the property of a list�valued expression that

if a cons cell terminates then so does its head� Ours are also the �rst projection�based

termination analysis techniques�

����� Earlier work

Mycroft �Myc��� proposed the �rst termination analysis technique for non�strict func�

tional languages� Just as for his strictness analysis the technique is restricted to

monomorphically�typed �rst�order languages with �at domains� He uses the same

two�point abstract domain f���g for each base type� this time with � representing

de�nite termination
all values except ��� and � representing possible termination

all values��

For those strictness analysis techniques in the BHA framework there are correspond�

ing termination analysis techniques
this is implicit in �Abr����	 Mycroft�s analysis

techniques form such a pair� Hence there is an implicit generalisation of the termina�

tion analysis to higher order with arbitrary abstract domains� Then� for example� the

interpretation of Wadler�s abstract list domain� given abstract list�element domain

D� would contain elements denoting possible termination� termination of evaluation

to WHNF� and for each d � D termination of evaluation of the entire spine of the list

with termination property d for all of the list elements�

Young �You��� implemented termination analysis in conjunction with an operation�

count analysis as part of an optimising compiler for the non�strict functional language

ALFL� demonstrating genuine run�time improvement� The technique is applicable

to higher�order untyped languages and is restricted to determining termination in

evaluation to WHNF�

Hartel �Har��� uses a simple kind of termination analysis in the FAST compiler to

CHAPTER �� INTRODUCTION ��

justify speculative evaluation� again just to WHNF	 implicit in the analysis technique

is a limitation to detecting expressions that require a small number of operations to

reduce�

��� Binding�time Analysis

The goal of partial evaluation is to evaluate a program with only part of its input

data
the static part
to yield a residual program that requires only the remaining

or dynamic
part of its input at run time� so optimising the program by specialising

it to the static data and thereby performing once and for all evaluation of the static

part of the input�

Partial evaluation is a rich �eld with a large volume of associated literature� but this

is not our interest here	 Jones� Gomard� and Sesto� �JGS��� provide an up�to�date

view of the subject� Rather� we are concerned with a particular problem of partial

evaluation known as binding�time analysis� Binding�time analysis seeks to determine

what part of a function�s
or program�s� output is static
determined� given that some

part of the input is static	 this information can be used to guide the partial�evaluation

process�

For a simple example� consider the function swap
x � y� �
y � x �� The entire result of

swap is static when the entire argument is static� the second component of the result

is static when the �rst component of the argument is static� and all of the result is

dynamic when all of the argument is dynamic� For binding�time analysis dynamic is

a safe approximation of static�

Binding�time analysis is not essential to the partial�evaluation process� but Bondorf�

Jones� Mogensen� and Sesto� �BJ"��� argue that it is essential for good partial eval�

uation� and binding�time analysis is performed by the current state�of�the�art partial

evaluators ��mix �GJ��� Go���� Similix �BD���� and Schism �Con��� Con���� We con�

sider only the central problem of binding�time analysis and not how the results of

analysis might be used
in particular� how a program might be annotated with the

results of analysis��

����� Earlier work

There is a strong sense in which binding�time analysis and strictness analysis are

dual problems� as shown by Launchbury �Lau��b� and shown later� and it seems to

CHAPTER �� INTRODUCTION ��

be the case that for each proposed technique for binding�time analysis there exists an

analogous technique for strictness analysis� and vice versa�

Jones� Sesto�� and Sondergaard �JSS��� described the �rst binding�time analysis tech�

nique using non�standard denotational semantics� They used a two�point abstract

domain at each base type� one point representing static and the other representing

unknown	 their method is roughly analogous to Mycroft�s� It is not hard to gener�

alise their method in the same way that the higher�order BHA technique generalises

Mycroft�s� for example� using Wadler�s abstract�list type constructor� given abstract

domain D for the list�element type� we may take � to mean unknown or dynamic�

lift � to mean determined up to WHNF� and for each d � D value lift� d to mean

that the entire spine of a list is static with all of the list elements having staticness

property d�

Mogensen �Mog��� generalised the technique to recursive data types using grammars

to represent patterns of staticness	 in this respect his treatment is similar to Hall�s

use of strictness patterns� Bondorf �Bon��� extended Mogensen�s technique to richer

abstract domains�

Launchbury �Lau��� hit upon the idea of using projections to encode degrees of static�

ness� In his thesis he gives analysis techniques for �rst�order monomorphically�typed

and polymorphically�typed languages� which were implemented as part of working

partial evaluators �Lau��b�� His monomorphic analysis technique is the starting point

for our work� and like Wadler and Hughes� strictness analysis technique will be refor�

mulated from �rst principles� and generalised to higher order�

As an aside we note that binding�time analysis techniques based on non�standard

typing also exist� Schmidt�s �Sch��� and Nielson and Nielson�s �NN��a� NN��b� tech�

niques are based on a form of type inference� Jensen brie�y discusses this approach

�Jen���� and the binding�time analysis in ��mix is by type inference �Go���� There

does not seem to be any reason that non�standard reduction could not be used to

perform binding�time analysis but we do not know of any such analysis technique�

Chapter �

Domains� Functions� Projections�

and Predicates

This chapter reviews some mathematical concepts and notation used in this thesis�

elementary domain theory including the construction of recursively�de�ned domains�

and the construction of recursively�de�ned predicates� The domain theory is entirely

standard� following �DP��� GS��� Sch���� The development of the construction of

recursively�de�ned predicates is a translation of the development in �MS��� in terms

of a universal domain to an analogous development in terms of domains constructed

from primitive domains in the style of �Sch���� This chapter may safely be skipped by

readers familiar with elementary domain theory and unconcerned about the details

of guaranteeing well�de�nedness of recursively�de�ned predicates�

	�� Domains

A partially ordered set� or poset� is a set S with a binary relation v which is re�exive�

antisymmetric� and transitive� When x v y we will say that x is less than
or below

or approximates or less de�ned than� y� or that y is greater
or above or more de�ned�

than x� We will write x � y to mean x v y and x �� y� and say that x is strictly less

than y� When x v y or y v x we say that x and y are comparable� otherwise they are

incomparable�

A subset M � S of a poset S is consistent if there is an upper bound for M in S�

and directed if for every �nite subset X � M there is an upper bound for X in M �

A poset S is pointed if it has a least element �� and complete if it is pointed and

every directed subset M � S has a least upper bound
lub�
F
M in S� A subset of

S in which every pair of elements is comparable is called a chain� typically written

��

CHAPTER �� DOMAINS� FUNCTIONS� PROJECTIONS� AND PREDICATES��

fx�� x�� x�� � � �g� or just fxig� When i 	 j implies xi v xj the chain is ascending	 when

i 	 j implies xi w xj it is descending� Clearly every ascending chain is directed�

Let S be a complete poset� An element x � S is �nite
or compact� if� whenever M

is a directed subset of S and x v
F
M � there is a point y � M such that x v y�

Let K
S� denote the set of �nite elements of S� If for every x � S� the set M �

fy � K
S� j y v xg is directed and
F
M � x� then S is algebraic
or continuous�� If

S is algebraic and K
S� is countable
hence ��algebraic�� then S is a domain�

A poset S is bounded complete
or consistently complete� if S has a least element and

every bounded subset has a least upper bound� A Scott domain is a bounded�complete

domain� An ��algebraic complete lattice is a Scott domain in which every subset has

a least upper bound� Since all domains in this thesis are Scott domains� �domain

always means �Scott domain 	 similarly �complete lattice will always mean ���

algebraic complete lattice� The symbols U � V � and W always denote domains� A

complete lattice is a domain� and adding a new top element
an element strictly

greater than all others
to a domain yields a complete lattice�

In a domain� every non�empty set has a greatest lower bound
glb�� and in a complete

lattice� every set has a lub and glb� Reversing the ordering in a complete lattice

�turning the lattice upside down�� yields a complete lattice�

	�	 Monotonicity� Continuity� and Inclusivity

Let f be a function from U to V � Then f is monotonic if x v y implies f x v f y�

or equivalently f

F
X� w

F

f X�	 inclusive if f

F
X� v

F

f X�	 and continuous if

is both monotonic and inclusive� that is f

F
X� �

F

f X�	 for all directed X � U �

Intuitively� for a function to be monotonic means that increasing the information in

its argument can only increase information in its result	 to be inclusive means that it

cannot �generate information from nowhere� at a limit�

Let the domain Truth of truth values be fTrue� Falseg� with True � False� Logical�or

� in this domain is glb� logical�and
�� is lub� and so on	 we use the logical operators

and domain operators interchangeably� A predicate is any function
not necessarily

monotonic or continuous� from some S into Truth� and say that the predicate is on

S� An n�ary relation R may be converted into an n�ary predicate P by de�ning

P
x�� � � � � xn� � True i�
x�� � � � � xn� � R	 similarly a predicate may be converted

into a relation� and we will be slightly sloppy and say
for example� that values are

related by a predicate when the predicate maps the tuple of those values to True�

CHAPTER �� DOMAINS� FUNCTIONS� PROJECTIONS� AND PREDICATES��

For a predicate to be inclusive
or directed complete� or admissible� implies that if it

holds at every value in a chain then it also holds at the limit� Continuous functions

are inclusive� but in general continuity is too restrictive� equality on a domain with

in�nite elements is inclusive but not continuous� Inclusivity may be thought of as

safe behaviour for a predicate� even though the predictable behaviour of continuous

functions at limit points may be lacking
an inclusive predicate may hold at the limit

of approximations that do not hold� e�g� equality�

The inclusive predicates on a given domain form a complete lattice with elements

ordered pointwise� and lub in this lattice is de�ned pointwise	 we use
i
� to construct

the domain of inclusive functions� so U
i
� Truth is the complete lattice of inclusive

predicates on U � The composition of an inclusive function with a continuous function

in either order� is always inclusive	 in particular� when f in continuous and p is an

inclusive predicate then p � f is an inclusive predicate� When describing relations

between predicates� we will use the boolean operators promoted pointwise to operate

on functions�

Continuous functions� regarded as relations between their arguments and results�

thence as predicates� are also inclusive� The relational compositions f �p and p�f���

regarded as a predicate� of inclusive predicate p and continuous function f regarded

as relations� are inclusive�

We will say that an n�ary predicate is jointly inclusive in a given subset of its argu�

ments if it is inclusive in those arguments regarded as a tuple� For example� P
x� y� z�

is jointly inclusive in x and y if for all chains f
xi� yi� j i
 �g with limit
x�� y�� and

�xed z we have P
x�� y�� z� v ti��P
xi� yi� z�� We note that inclusivity in individual

arguments does not imply joint inclusivity	 a counterexample is the binary predicate

de�ned like equality for �nite arguments but returns False when either argument is

in�nite� However� joint inclusivity in some set of arguments does imply inclusivity in

each argument in that set�

Following we give a set of constraints su�cient to guarantee that a logical assertion

is inclusive in a free variable�

Proposition ��� �adapted from �Sch����

A logical assertion P
x� is inclusive in x if it can be expressed in the form

�u� � U�� � � � � um � Um �
Vn
i��

Wp
j�� Qij �

for m�n� p
 �� where Qi�j is either a predicate using only the ui as free identi�ers�

or an expression of the form E� v E�� where E� and E� involve only continuous

functions� constants� function application� and x and the ui as free identi�ers� �

CHAPTER �� DOMAINS� FUNCTIONS� PROJECTIONS� AND PREDICATES��

We note the absence of negation and existential quanti�cation� Hence for example

if P� and P� are inclusive we may not conclude that P� � P� is inclusive� for a

counterexample suppose that P� is false for every element of a chain and its limit�

and P� is false for every element of the chain but true at the limit�

Multiary predicates de�ned in this way will be jointly inclusive in every subset of

their arguments	 this follows from the fact that projection from tuples is continuous�

	�
 Projections and Embeddings

A projection is a continuous idempotent function that approximates the identity� The

set of all projections on a given domain� ordered by the usual function ordering� forms

a complete lattice with the identity ID as the greatest element and the constant

bottom function BOT as the least� Since the glb of a set of projections in the

domain of continuous functions is not necessarily a projection� the glb in the lattice

of projections is de�ned to be the greatest projection approximating every element of

the set
this projection necessarily approximates the glb in the continuous function

space� A projection is �nitary if its image is a domain� The set of �nitary projections

on any domain U also forms a complete lattice� and will be denoted by jU j� All

projections in this thesis are �nitary� The symbols �� �� �� and � will always denote

projections�

A retraction pair comprises two continuous functions f � U � V and g � V � U �

abbreviated
f� g� � U � V � such that g � f � idU and f � g v idV � From these two

conditions it is follows that f � g is a projection� f is an injection� g is surjection� f

determines g and vice versa
a retraction pair is a special case of a Galois connection�

in which the condition g�f � idU is weakened to g�f w idU �� f and g both distribute

over t and u� and the range f
U� is a subdomain of V isomorphic to U � It is usual to

call g a projection� since its range is a domain isomorphic to the range of the projection

f�g� and retraction pairs are also called embedding�projection pairs� In this sense� any

function is a projection so long as there exists a corresponding embedding	 similarly�

any function is an embedding so long as there is a corresponding projection� We use

the term projection in this sense exactly when the argument and result domains are

not the same domain� When f �g � idV we say that f and g are isomorphisms	 when

such f and g exist we write U �� V and say that U and V are isomorphic	 given f �

for all u � U we say that u and f u are equal up to isomorphism�

CHAPTER �� DOMAINS� FUNCTIONS� PROJECTIONS� AND PREDICATES��

	�� Domain Construction

We construct domains from primitive domains and various domain constructors� The

required domain constructors are lifting� sum� product� smash product� and various

function space constructors�

The n�ary product S��� � ��Sn of posets Si� � 	 i 	 n� is the poset consisting of tuples

s�� � � � � sn� where si � Si� with the ordering de�ned coordinatewise� We take unary

product to be the identity� that is� we do not di�erentiate between s and the one�tuple

s�� Nullary product is taken to be �� the identity
up to isomorphism� of ��� For

n
 � and i such that � 	 i 	 n the function 	i �
S� � � � �� Sn�� Si is de�ned by

	i
s�� � � � � sn� � si� When each Si is a domain� then so is the product� and each 	i is a

projection with corresponding embedding that maps each s to
�� � � � ��� s��� � � � ����

where s appears as the ith element of the tuple�

Given a poset S� the lifted set S� is de�ned to be f�g �
f�g � S� where � is a new

element which is not a pair� with ordering � v
�� s� for all s� and for all s and t we

have
�� s� v
�� t� i� s v t� When S is a countable set of incomparable elements�

S� is a �at domain	 we require three primitive domains constructed in this way� the

one�point domain � � fg� � f�g� the domain of booleans Bool � ftrue� falseg��

and the domain of integers Int � Z��
For readability we will use the more standard

notation for the values in Bool � namely �� tt � and � �� The function lift from S to S�

is de�ned by lift s �
�� s�� and the function drop from S� to S by drop � � � and

drop
�� s� � s� When S is a domain S� is a domain and lift and drop form a Galois

connection� Henceforth we will denote each non�bottom element
�� s� of S� by lift s�

When U and V are domains� the set U � V of continuous functions from U to V

is a domain� with elements ordered pointwise� that is� f v g i� for all x we have

f x v g x� Lub and glb are also de�ned pointwise�
Unfortunately� the symbol � is

overloaded� even when R and S are not domains we write R� S to mean some kind

of mapping from R to S to be speci�ed in context��

The n�ary smash product S� � � � �� Sn of pointed posets Si is the pointed poset

f�g � f
s�� � � � � sn� j si � Si � si �� �� � 	 i 	 ng �

where � is a new least element that is not a tuple� The ordering on tuples is coordi�

natewise� There is a surjection smash taking ordinary product into smash product�

�This is a slight abuse of the terminology since ��� is not a continuous function in our framework
�though it is in �MS���	
 what we mean is that U and U � � are isomorphic�

CHAPTER �� DOMAINS� FUNCTIONS� PROJECTIONS� AND PREDICATES��

de�ned by

smash �
S� � � � �� Sn� �
S� � � � �� Sn� �

smash
s�� � � � � sn� � �� if si � � for some i �

smash
s�� � � � � sn� �
s�� � � � � sn�� otherwise �

The injection unsmash is de�ned by

unsmash �
S� � � � �� Sn� �
S� � � � �� Sn� �

unsmash � �
�� � � � ��� �

unsmash
s�� � � � � sn� �
s�� � � � � sn� �

When the Si are domains� then their smash product is also a domain� unsmash and

smash comprise a retraction pair� and domains
S� � � � �� Sn�� and
S����� � ��
Sn��

are isomorphic� Unary smash product is taken to be the identity� Nullary smash

product is taken to be ��� the identity
up to isomorphism� of ��

The n�ary
coalesced� sum U� � � � �� Un of domains Ui is the domain

f�g � f
i � u� j � 	 i 	 n� u � Ui � u �� �g

where � is a new element that is not a pair� with � v
i� u� for all i and u� and

i� u� v
j� v� i� i � j and u v v� For each i there are continuous functions ini and

outi de�ned by

ini � Ui �
U� � � � �� Un� �

ini � � � �

ini u �
i � u�� if u �� � �

and

outi �
U� � � � �� Un� � Ui �

outi � � � �

outi
j � u� � �� if i �� j �

outi
j � u� � u� if i � j �

Then ini and outi comprise a retraction pair for each i �

For each of the domain operators there is a corresponding operator on functions� For

f � U � V de�ne

f� � U� � V� �

f� � � � �

f�
lift v� � lift
f v� �

Let fi � Ui � Vi for � 	 i 	 n� De�ne

f� � � � �� fn �
U� � � � �� Un� �
V� � � � �� Vn� �

f� � � � �� fn�
u�� � � � � un� �
f� u�� � � � � fn un� �

CHAPTER �� DOMAINS� FUNCTIONS� PROJECTIONS� AND PREDICATES��

De�ne f� � � � �� fn � smash �
f� � � � �� fn� � unsmash� Then
f��� � � � ��
fn�� is

equal to
f� � � � �� fn�� up to isomorphism�

For sum� de�ne

f� � � � �� fn �
U� � � � �� Un� �
V� � � � �� Vn� �

f� � � � �� fn� � � � �

f� � � � �� fn�
i � v� � ini
fi v� �

This slight asymmetry in the de�nitions of functions on sums will be pervasive� since

ini � � inj � for all i and j � pattern�matching is done on � and pairs
i � u�	 since

�x�
i� x� is not total� reinjection into the sum is done with ini �

For f � U � V and g � T �W de�ne

f � g �
V � T � �
U �W � �

f � g� h � g � h � f �

	�� Recursively De
ned Domains

Domains may be recursively de�ned	 such domains are sometimes called re�exive�

Let a domain expression F
X � be an expression built using �� Int � domain construc�

tors� and the domain�valued variable X � Then F has an obvious interpretation as a

mapping from domains to domains� and for F built using the domain constructors

used in this thesis
possibly with some given restrictions� there is always a domain

U such that U is isomorphic to F
U �� Such domains are de�ned by the inverse limit

construction of Scott �Sco���	 we brie�y outline the elements of this construction as

described by Schmidt �Sch����

Given domain expression F � domains U� and V�� and retraction pair

�� ��� � U� �

V�� de�ne Ui � F i
U�� and Vi � F i
V�� for i
 �
by convention F � is taken to

be the identity�� By giving an alternative interpretation of the symbols comprising

F
de�ned in Section ������� we de�ne the retraction pairs

i � �i�� i
 �� where

i��� �i��� � F

i � �i�� and

i � �i� � Ui � Vi � By arranging that U� � V� we have

i � �i� � Ui � Ui�� for all i � The pair

fUi j i
 �g� f

i � �i� � Ui � Ui�� j i
 �g�

is a retraction sequence� and its inverse limit is the set of in�nite tuples

U� � f
x�� x�� � � �� j xi � Ui � xi � �i xi��� i
 �g

with ordering x vU� y i�
	i x � vUi

	i y� for all i
 �� that is� with elements

ordered coordinatewise just as for �nite products� The essential result is that

CHAPTER �� DOMAINS� FUNCTIONS� PROJECTIONS� AND PREDICATES��

U�
�� F
U��� One nice feature of this construction is the representation of in�nite

elements by in�nite tuples of �nite elements� which makes clear that in�nite elements

are determined by their �nite approximations� Slightly informally� we will say U� is

the limit of the sequence fUig� and that U� is a solution of the equation X � F
X ��

since applications of the isomorphism map and its inverse are left implicit�

In our development the starting domain U� will always either be �� in which case

�� ��� is
�x ��� �x ���� or ��� in which case each Ui will be
isomorphic to� V� for

some V � and

�� ��� is

�x �����
�x �����
up to isomorphism��

To describe the solution of a set of mutually recursive domain equations

U� � F�
U�� � � � �Un� �
���

Un � Fn
U�� � � � �Un� �

where the domain equations have been generalised to allow more than one variable��

we construct n retraction sequences

fUi�j j j
 �g� f

i�j � �i�j � � Ui�j � Ui�j�� j j
 �g�� � 	 i 	 n

in parallel� where the Ui�� and

i�� �i�� are given� Ui�j�� � Fi
U��j � � � � �Un�j �� and

i�j��� �i�j��� � Fi

i��� �i���� � � � �

i�n � �i�n�� are appropriately de�ned retraction

pairs� We may conveniently think of the tuple of inverse limits as comprising a

solution of the single equation

U�� � � � �Un� �
F�
U�� � � � �Un�� � � � �Fn
U�� � � � �Un�� �

The retraction pairs in a retraction sequence may be composed to yield new retraction

pairs� Let

fUi j i
 �g� f

i � �i� � Ui � Ui�� j i
 �g�

be a retraction sequence with inverse limit U�� and de�ne

�mn � Um � Un �

�mn �
n �
n�� � � � � �
m � m
 n �

�mn � �m � �m�� � � � � � �n � m � n �

�mn � idUm m � n �

Then �mn is an embedding with corresponding projection �nm for m 	 n� Next we

generalise to allow m or n to be �� Recalling that the elements of U� are in�nite

tuples we have

�m� � Um � U�

�m� � �x �
�m�
x �� �m�
x �� �m�
x �� � � � �

CHAPTER �� DOMAINS� FUNCTIONS� PROJECTIONS� AND PREDICATES��

and

��m � U� � Um

��m � 	m �

Then
�m�� ��m� is a retraction pair� and ��� � ti��
�i� � ��i� is the identity on

U��

Next we show that the domain operators are in a sense continuous� We consider the

particular case of �� Let

fUi j i
 �g� f

Ui � �
U
i � � Ui � Ui�� j i
 �g�

be a retraction sequence with inverse limit U�� and similarly for V�� De�ne

Wi � Ui � Vi �

Wi � �U
i �
Vi �

�W
i �
Ui � �V

i �

Then
fWi j i
 �g� f

Wi � �W
i � �Wi �Wi�� j i
 �g� is a retraction sequence

with inverse limit U� � V�� The essential fact required to show this is that for

�Wmn � �Unm � �Vmn that ti��
�
W
i� � �W�i� is the identity on U� � V�� as follows�

ti��
�
W
i� � �

W
�i�

� ti��

�
U
�i � �Vi�� �
�Ui� � �V�i��

� ti��

�
U
i� � �

U
�i��
�Ui� � �

V
�i��

� ti��
�
U
i� � �

U
�i�� ti��
�

U
i� � �

V
�i� �� continuous�

� idU� � idV�

� id �

Analogous results hold for the other domain operators�

����� De�ning continuous functions

For each element x �
x�� x�� � � �� of U� we have xi � ��i x� We will call fxi j i
 �g

a family of approximations of x� The limit ti��
�i� xi� is just another way of de�

scribing x� Slightly abusing the terminology we will call x the limit of the family of

approximations�

Next we consider particular instances of families of approximations and their limits�

continuous functions with argument and�or result domains that are inverse limits of

retraction sequences�

CHAPTER �� DOMAINS� FUNCTIONS� PROJECTIONS� AND PREDICATES��

Let f � U� � V be a continuous function� Then f determines a tuple
f�� f�� � � �� of

continuous functions which is an element of the inverse limit of the retraction sequence

fUi � V j i
 �g �

f
�i � idV �
i � idV � �
Ui � V ��
Ui�� � V � j i
 �g� �

where the

i � �i� are the retraction pairs from the retraction sequence de�ning

U�� and fi � f � �i�
and therefore fi � fi�� �
i� for each i � Conversely� a func�

tion f � U� � V is uniquely determined by the family of approximating func�

tions fi � Ui � V � where fi � fi�� �
i � by taking f � ti��
fi � ��i�� The condition

fi � fi�� �
i guarantees that ff� � ���� f� � ���� � � �g is an ascending chain and so has a

lub which is a continuous function
it may also be thought of as guaranteeing that the

approximations agree at common arguments� In this case f is said to be the mediat�

ing morphism of the family of approximations� Clearly families of approximations are

in one�to�one correspondence with the continuous functions� Analogous results hold

when the result domain� or both the argument and result domain� are the inverse limit

of a retraction sequences� The form of the de�nition of a recursively�de�ned function

often dictates whether we choose as its de�nition the mediating morphism of a family

of approximations� or the least upper bound of an ascending chain� As we will see� the

former approach is useful when the de�nition of the argument and�or result domain

is parallel to that of the function de�nition� such that each approximating function

is de�ned on the corresponding approximating domain
s��

����� De�ning inclusive predicates

The intended relation between values in various semantics will be de�ned in terms

of type structure� and recursively�de�ned types will give rise to recursively�de�ned

predicates� To show that such predicates are well de�ned and inclusive requires

an appropriate theory which is described following� The source of this material is

Chapter � of �MS���� wherein domains are generated by projecting out of a universal

domain� Here the results are recast
hopefully much more understandably� in terms

of domain construction as described in �Sch���� Chapter �� of �Sto��� has a gentle

introduction by way of example to the more general development in �MS���� again

in terms of a universal domain� A category�theoretic development may be found in

�Nie����

In the following� the symbols p and q always denote predicates�

It is often useful to de�ne inclusive predicates recursively� For discussion we will take

a recursive de�nition to be an equation of the form f � F
f � and call F the de�n�

ing functional� For de�ning continuous functions� typically F is itself a continuous

CHAPTER �� DOMAINS� FUNCTIONS� PROJECTIONS� AND PREDICATES��

function and f is taken to be some �xed point of F � When F is continuous� for

any continuous v� such that v� v F
v�� the sequence fF �
v���F
�
v���F

�
v��� � � �g is

ascending and ti�� F
i
v�� is well de�ned and is the least �xed point of F greater

than v�� Unfortunately� recursive de�nitions of inclusive predicates will typically

have de�ning functionals that� like the predicates themselves� are not monotonic and

therefore not continuous	 hence such functionals cannot be assumed to have least

�xed points� or any �xed points at all� Following� we give an example to highlight

the source
for us� of di�culty and motivate its solution�

����� A simple recursively�de�ned predicate

Anticipating later development we give yet another interpretation of the symbols

originally de�ned as domain operators� and subsequently as operators on functions�

this time as operators on binary predicates
that is� predicates on pairs�� At this

point we adopt the diacritical convention of �MS���� wherein corresponding or related

objects
typically domains or domain elements� from two di�erent semantics are given

the same base name� e�g� x� and di�erentiated by acute and grave accents� e�g� �x and

	x � A pair
�x � 	x � of such objects may be abbreviated bx �
Let p �
�U � 	U �

i
� Truth� Then

p� �
�U� � 	U��
i
� Truth �

p�
�� �� � True �

p�
lift x � �� � False �

p�
�� lift y� � False �

p�
lift x � lift y� � p
x � y� �

Let pi �
�Ui � 	Ui�
i
� Truth for � 	 i 	 n� The product of these predicates relates

corresponding elements of each of its arguments�

p� � � � �� pn �

�U� � � � �� �Un��
 	U� � � � �� 	Un��
i
� Truth �

p� � � � �� pn�
�x � 	x� �
p� � � � �� pn�
unsmash �x � unsmash 	x � �

where

p� � � � �� pn �

�U� � � � �� �Un��
 	U� � � � �� 	Un��
i
� Truth �

p� � � � �� pn�

�x�� � � � ��xn��
	x�� � � � � 	xn�� � p�
�x�� 	x�� � � � � � pn
�xn � 	xn� �

Then
p��� � � � ��
pn�� is equal to
p� � � � �� pn�� up to isomorphism�

The n�ary coalesced predicate sum can hold only when the arguments come from the

CHAPTER �� DOMAINS� FUNCTIONS� PROJECTIONS� AND PREDICATES��

same summand or are both bottom�

p� � � � �� pn �

 !U� � � � �� !Un��
 $U� � � � �� $Un��
i
� Truth �

p� � � � �� pn�
���� � True �

p� � � � �� pn�
��
i � 	x�� � False �

p� � � � �� pn�

i ��x���� � False �

p� � � � �� pn�

i ��x��
j � 	x�� � False� if i �� j �

p� � � � �� pn�

i ��x��
j � 	x�� � pi
�x � 	x�� if i � j �

For q �
 �V � 	V �
i
� Truth the predicate p � q holds on
f � g� if the results of f and

g are related by q whenever the arguments are related by p�

p � q �

�U � �V � �
 	U � 	V ��
i
� Truth �

p � q� bf � �bx �p
bx �� q
�f �x � 	f 	x � �

All of these operators map inclusive predicates to inclusive predicates�

Our simple example involves de�ning equality on pairs of values from domains built

from the various domain operators and primitive domains� assuming equality already

de�ned on the primitive domains� If we interpret the symbols � and Int as equality

predicates on the corresponding primitive domains then any expression involving the

domain operators and the primitive sets can also be interpreted as a predicate on

pairs of elements from the corresponding domain� and this predicate is the equality

predicate� For example� Int � Int interpreted as a predicate is equality on
Int �

Int��
Int�Int� interpreted as a domain� Now we try to extend the idea to recursive

domain equations� Our example will involve the equation

X � X � Int �

With the right�hand side interpreted as a domain expression with free variable X �

given a starting domain U� this equation has a least solution greater than U� under

a suitable ordering for domains� Similarly� if the right�hand side is interpreted as

an expression involving continuous functions
given some interpretation of Int as a

continuous function� this equation has a least solution which is a continuous function�

We might hope that the interpretation of the equation as a predicate would de�ne the

appropriate equality predicate� perhaps as its least �xed point� The corresponding

functional is

P
p� � �bf � �bx � p
bx��
�f �x � �Int
	f 	x � �

It is not hard to see that equality is a �xed point of this equation� and in fact that it

is the least �xed point� but we require a general theory about the existence of such

�xed points�

CHAPTER �� DOMAINS� FUNCTIONS� PROJECTIONS� AND PREDICATES��

The least predicate p� on X � X is �bf �True� which relates every pair of functions�

Let pi�� � P
pi� for i
 �� Then

p� � �bf � �bx �
�f �x� �Int
	f 	x � �

so p� requires its arguments to be the same constant function� which is stronger than

equality� Continuing� p� requires that its arguments map the same constant functions

to the same values� which is weaker than equality� It is now clear that P is not

monotonic� The operators ��� �� �� and � are monotonic on predicates	 the problem

is that � is not monotonic in its �rst argument� Though ti��P
i
p�� is well de�ned

since the inclusive predicates on X form a complete lattice�� fp�� p�� p�� � � �g is not a

chain and it is not clear that its lub is a �xed point of P 	 it is certainly not the least

�xed point since equality on X is strictly less than p��

Recall that the essential properties of the family of approximations fi � Ui � V of

a continuous function are that each fi is continuous� and fi � fi�� �
i � The second

condition may be thought of as requiring fi and fi�� to agree at common arguments	 it

also guarantees that ff� � ���� f� � ���� � � �g is a chain and so has a lub which is a con�

tinuous function� Now consider a set of inclusive predicates pi � Ui
i
� Truth� Just as

for continuous functions� let us require that any pair agree at common arguments� that

is� that pi � pi�� �
i � plus the extra condition that pi�� � pi � �i � This extra condi�

tion guarantees� in the absence of monotonicity of the pi � that fp� � ���� p� � ���� � � �g

is chain and therefore has a limit which is necessarily an inclusive predicate� These

two conditions are usually given as pi � pi�� �
i and pi�� � pi � �i for all i� since

pi�� � pi � �i

� pi�� �
i � pi � �i �
i

� pi�� �
i � pi �

which together with pi � pi�� �
i implies pi � pi�� �
i �

The foregoing is summarised by the following statement� which is embodied in Propo�

sitions ����� and ����� of �MS����

Proposition ���

Let G be a mapping of domains to domains� H a mapping of retraction pairs

to retraction pairs� and P a mapping from predicates to predicates� and suppose

starting values U��

�� ���� p�� and for all i
 � the de�nitions Ui�� � G
Ui��

i��� �i��� � H

i � �i�� and pi�� � P
pi�� such that

i � �i� � Ui � Ui�� is a re�

traction pair and pi � Ui
i
� Truth is an inclusive predicate with pi � pi�� �
i and

pi�� � pi � �i � Then p� � ti��
pi � ��i� is inclusive and is the least �xed point of

P greater than p� � ���� �

CHAPTER �� DOMAINS� FUNCTIONS� PROJECTIONS� AND PREDICATES��

Given such a set of pi with limit p�� two useful consequences are that pi � p� � �i�

the limit agrees with the approximations at common arguments� and p� � pi � ��i �

for all i�

Returning to the example� we use Proposition ��� to show the existence of a least

�xed point of the de�ning functional� Rather than having separate names G � H �

and P for the various mappings as in the statement above� we use instead a single

syntactic� entity F for which we have various interpretations to yield the mappings�

Typically we are interested in relating values from two di�erent domains �U and 	U �

as usual this is accomplished by de�ning a predicate on �U � 	U � Nonetheless it will

be convenient to pretend that these two domains are built separately� in parallel� and

hence we de�ne two versions �F and 	F of the functions mapping domains to domains

and retraction pairs to retraction pairs� This is really just a syntactic convenience to

avoid building and decomposing various products�

Let the functions mapping domains to domains be

�F
U � � 	F
U � � U � Int �

with
�U� � 	U� � � �

�Ui�� � 	Ui�� � �F
�Ui�� i
 � �

Let the functions mapping retraction pairs to retraction pairs be

�F

� �� � 	F

� �� �
�f � f � �� �f � f �
�

with
�
� � 	
� � �x �� �

��� � 	�� � �x �� �

�
i��� ��i��� �
	
i��� 	�i��� � �F
�
i � ��i�� i
 � �

and the function mapping predicates to predicates be

F
p� � �bf � �bx � p
bx ��
�f �x � �
	f 	x � �

with

pi �
�Ui � 	Ui�
i
� Truth �

p� � �bx �True �

pi�� � F
pi�� i
 � �

The goal is to show that for all i that pi is inclusive� and pi � pi�� �
�
i � 	
i� and

pi�� � pi �
��i � 	�i�� First we observe that p� is trivially inclusive� and � maps

inclusive predicates to inclusive predicates� hence by induction on i we have that pi is

inclusive for all i � The latter two conditions are proven together� again by induction

on i �

CHAPTER �� DOMAINS� FUNCTIONS� PROJECTIONS� AND PREDICATES��

Case i � �� For the �rst part�

p� � p� �
�
� � 	
��

� �bf �True � p� �
�
� � 	
�� �defn p��

� p� �
�
� � 	
�� �defn ��

� p�
�x ��� �x ��� �defn !
�� $
��

� p� �
� � �� �defn p��

� True �

For the second part�

p� � p� �
��� � 	���

� p� � �bf �True �
 ��� � 	��� �defn p��

� True �

Case i � n" �� Let
��Int denote the
pre�x� equality predicate on Int � Int � Let
bf be �xed� Then

pn��
bf �
� pn �
��Int �
�f � 	f � �defn pn���

� pn �
 ��n � 	�n��
��Int �
�f � 	f � �
��n � 	�n� � !�n � $�n is onto�

� pn�� �
��Int �
�f � 	f � �
��n � 	�n� �I�H���

� pn�� �
��Int �

�
n�� �f ��
	
n�� 	f �� �defn !
n��� $
n���

�
pn�� �
�
n�� � 	
n����
bf � �defn pn���

where I�H�� stands for second part of the induction hypothesis pn�� � pn �
��n � 	�n��

Since bf was arbitrarily chosen� we conclude that pn�� � pn�� �
�
n�� � 	
n���� For

the second half� writing I�H�� for the �rst part pn � pn�� �
�
n � 	
n� of the induction

hypothesis�

pn��
bf �
� pn�� �
��Int �
�f � 	f � �defn pn���

� pn�� �
�
n � 	
n��
��Int �
�f � 	f � �
�
n � 	
n�

� pn �
��Int �
�f � 	f � �
�
n � 	
n� �I�H���

� pn �
��Int �

��n��
�f ��
 	�n��

	f �� �defn !�n��� $�n���

�
pn�� �
��n�� � 	�n����
bf � �defn pn���

So pn�� � pn�� �
 ��n�� � 	�n���� We conclude that ti��
pi �
���i � 	��i�� is the least

�xed point greater than �bx �True of F interpreted as a functional on predicates� and

is therefore its least �xed point�

It is instructive to compare the predicates pi �
���i � 	��i� with those generated in

the �rst attempt to �nd a �xed point of F
call them pi
�� For example� the predicates

CHAPTER �� DOMAINS� FUNCTIONS� PROJECTIONS� AND PREDICATES��

p� �
���� � 	���� and p�
� are the same� relating all argument pairs� However� as shown�

p�
� requires its arguments to agree at every pair of values� that is� be the same constant

function� while p� � ��� requires it arguments to agree only at the pair
�����

An important observation is that if we can show that some value satis�es some �xed

point of F then it certainly satis�es the least �xed point� since the least �xed point

is the one that holds for the largest set of arguments� More generally� if some value

satis�es some �xed point greater that a particular �xed point p then it satis�es the

least �xed greater than p�

In summary� we have proven that the equation X � X � Int � interpreted as a predi�

cate equation� has a least �xed point which is a predicate on the the least �xed point

of the equation interpreted as a domain equation� This approach is too low�level for

our purposes� we would like to show at once that a whole class of such predicates is

well de�ned� A step in this direction would be to show the analogous result holds for

every equation of the form X � F
X � when F is built from �� Int � ��� �� �� �� and�

subject to a restriction on � given later�� We require predicates other than equality

predicates� in fact predicates between dissimilar domains� We give a more general

result that requires only that the construction of the domains be �su�ciently parallel��

and an appropriate� similarly parallel construction of the corresponding predicate�

����� A more general approach

Interpretations of the symbols ��� �� �� �� and� as operators on domains� functions�

and predicates have already been given� Interpretations as operators on retraction

pairs have been alluded to but not de�ned	 those de�nitions are given following�

Let
fi � gi� � Ui � Vi for � 	 i 	 n� Then

f � g�� � U� � V� �

f � g�� �
f�� g�� �

f�� g��� � � ��
fn � gn� �
U� � � � �� Un��
V� � � � �� Vn� �

f�� g��� � � ��
fn � gn� �
f� � � � �� fn � g� � � � �� gn� �

f�� g��� � � ��
fn � gn� �
U� � � � �� Un��
V� � � � �� Vn� �

f�� g��� � � ��
fn � gn� �
f� � � � �� fn � g� � � � �� gn� �

f�� g��� � � ��
fn � gn� �
U� � � � �� Un��
V� � � � �� Vn� �

f�� g��� � � ��
fn � gn� �
f� � � � �� fn � g� � � � �� gn� �

CHAPTER �� DOMAINS� FUNCTIONS� PROJECTIONS� AND PREDICATES��

f�� g���
f�� g�� �
U� � U���
V� � V�� �

f�� g���
f�� g�� �
g� � f�� f� � g�� �

De�ned this way� all of the operators map retraction pairs to retraction pairs�
This is

subject to a condition on�� Since U � � �� � there is in general no embedding from U

to U � V when V is �	 hence we require that arguments of the domain operator� not

be isomorphic to �� and arguments of the retraction operator � not be the constant

bottom function� This condition will always be met in our domain constructions and

we will not mention it further�� If F
X � is a domain expression built from these

operators and U and V are domains with

� �� � U � V a retraction pair� then
by

induction on the structure of F �� F

� �� � F
U �� F
V � is a retraction pair�

Let a predictor tuple be a tuple of operators
P � �D � 	D � �R� 	R�� each having the same

arity n
 �� where P maps n�tuples of inclusive predicates to inclusive predicates� �D

and 	D map n�tuples of domains to domains� and �R and 	R map n�tuples of retraction

pairs to retraction pairs� satisfying the following properties� For all domains Ui � Vi �

� 	 i 	 n� and retraction pairs

�
i � ��i� � �Ui � �Vi � � 	 i 	 n �

	
i � 	�i� � 	Ui � 	Vi � � 	 i 	 n �

we have
�
� ��� � �U � �V and
	
� 	�� � 	U � 	V � where

�
� ��� � �R

�
�� ����� � � � �
�
n � ��n�� �

	
� 	�� � 	R

	
�� 	���� � � � �
	
n � 	�n�� �

�U � �D
�U�� � � � � �Un� �

	U � 	D
 	U�� � � � � 	Un� �

�V � �D
 �V�� � � � � �Vn� �

	V � 	D
 	V�� � � � � 	Vn� �

Further� for all inclusive predicates

pi �
�Ui � 	Ui�
i
� Truth� � 	 i 	 n �

qi �
 �Vi � 	Vi�
i
� Truth� � 	 i 	 n �

we have

p �
�U � 	U �
i
� Truth �

q �
 �V � 	V �
i
� Truth �

where p � P
p�� � � � � pn� and q � P
q�� � � � � qn�� Finally� assuming that pi � qi �
!
i�
$
i� and qi � pi �
 !�i� $�i� for � 	 i 	 n we have p� q �
!
� $
� and q � p �
 !�� $���

Then� if !FD
X� is a domain expression built from the various !D� expression $FD
X�

is the the same with each !D replaced by the corresponding $D� expression !FR
X�

the same with each !D replaced by the corresponding !R� and similarly for $FR
X��

CHAPTER �� DOMAINS� FUNCTIONS� PROJECTIONS� AND PREDICATES��

and �nally FP
X� the same with each !D replaced by the corresponding P � then by

induction on the structure of F we have that
FP � !FD� $FD� $FR� $FR� is a predictor tuple�

Then for starting domains !D�� $D�� retraction pairs
!
�� !����
 $
�� $���� and predicate

p� such that

p� �
�D� � 	D��
i
� Truth �

p� � FP
p�� �
�
� � 	
�� �

FP
p�� � p� �
��� � 	��� �

by induction on i �

pi �
�Di � 	Di�
i
� Truth �

pi � pi�� �
�
i � 	
i� �

pi�� � pi �
��i � 	�i� �

where pi � F i
P
p��� !Di � !F i

P
 !D��� $Di � $F i
P
 $D���
 !
i� !�i� � !F i

R

!
�� !���� and
$
i� $�i� �

$F i
R

$
�� $���� for i
 �� Hence

ti��
pi �
���i � 	��i�� �
ti��
�F i
D
�D�� � ti��

	F i
D
 	D���

i
� Truth

is an inclusive predicate and is the least �xed point of FP �

Next we de�ne a set of predictor tuples to cover our needs� The base cases introduce

primitive domains already equipped with inclusive predicates�

Proposition ���

Given domains �E and 	E and inclusive predicate q �
�E � 	E �
i
� Truth the following

de�nes a predictor tuple�

P
p� � q �

�D
X � � �E �

	D
X � � 	E �

�R

� �� �
id�E � id�E � �

	R

� �� �
id�E � id�E � �

Veri�cation is trivial� �

Examples include

�p��bx �True� �D ��� �D ��� �

� ���
id�� id��� �

� ���
id�� id��� �
which introduces the pair of one�point domains with the constant True predicate on

it� and

�p�
��Int � �D �Int � �D �Int � �

� ���
idInt � idInt�� �

� ���
idInt � idInt�� �

which introduces the pair of integer domains with the equal predicate between then�

Next we introduce the �building� predictor tuples�

CHAPTER �� DOMAINS� FUNCTIONS� PROJECTIONS� AND PREDICATES��

Proposition ���

The following are all predictor tuples�

��� ��� ��� ��� ��� �

���������� �

���������� �

���������� �

���������� �

where �� �� and � may be nullary� unary� or multiary�

Proof

Verifying that these are predictor tuples is actually very simple	 the only interesting

case is �� We will do the veri�cation for �� and ��

We consider
��� ��� ��� ��� ��� �rst� Assuming p and q are inclusive predicates such that

�
� ��� � �U � �V �

	
� 	�� � 	U � 	V �

p �
�U � 	U �
i
� Truth �

q �
 �V � 	V �
i
� Truth �

p � q �
�
� 	
� �

q � p �
�� � 	�� �

we need to show

p� � q� �
�
� � 	
�� �

q� � p� �
��� � 	��� �

Veri�cation is trivial�

Next we consider
����������� Assuming

�
i � ��i� � �Ui � �Vi � i � �� � �

	
i � 	�i� � �Ui � �Vi � i � �� � �

pi �
�Ui � 	Ui�
i
� Truth� i � �� � �

qi �
 �Vi � 	Vi�
i
� Truth� i � �� � �

pi � qi �
�
i � 	
i�� i � �� � �

qi � pi �
��i � 	�i�� i � �� � �

we need to show that

p� � p�� �
q� � q�� �

 ��� � �
���
 	�� � 	
��� �

q� � q�� �
p� � p�� �

�
� � �����
	
� � 	���� �

CHAPTER �� DOMAINS� FUNCTIONS� PROJECTIONS� AND PREDICATES��

We show the �rst half�

p� � p��
bf �
� �bx � p�
bx �� p�
�f �x � 	f 	x � �defn ��

� �bx � p�
��� �x � 	�� 	x �� p�
�f
��� �x �� 	f
 	�� 	x �� � !��� $�� functions�

� �bx � q�
bx �� p�
�f
��� �x �� 	f
 	�� 	x �� �q� � p� �
 !�� � $����

� �bx � q�
bx �� q�
�
�
�f
��� �x ��� 	
�
	f
 	�� 	x ��� �p� � q� �
!
� � $
���

� �bx � q�
bx �� q�

��� � �
�� �f �x �
 	�� � 	
�� 	f 	x � �defn ��

�
q� � q��
bf � �

��� � �
���
 	�� � 	
���
bf �
By symmetry the second half holds
p and q and
 and � swap roles� thus the other

two assumptions are used�� �

We make the �nal observation that there is nothing special about the predicates being

binary
it is simply that we will require binary predicates constructed in this way�

Chapter �

Analysing Functions with

Projections

We consider four kinds of analysis� strictness analysis� binding�time analysis� termi�

nation analysis� and what we call security analysis� We start with an overview� then

consider each in more depth�

Backward Strictness Analysis� Projections may be used to specify upper and

lower bounds on the de�nedness of values
a semantic interpretation� and upper and

lower bounds on the degree of evaluation of expressions
an operational interpreta�

tion� Though it is possible to formalise the operational interpretation �Bur��a�� in

this thesis we will treat it only as an informal source of intuition� We give three

examples� Let f denote f � U � V such that f � f � BOT � This equation makes

clear that f requires no information from its argument� that is� the argument may be

completely unde�ned	 operationally this says that any argument of f need never be

evaluated� if evaluation of an application of f requires evaluation of the argument�

evaluation of the argument may safely diverge or return a dummy value� Here we say

that f is BOT strict�

As another example� let swap denote swap� a function on pairs� such that swap
x� y� �

y� x�� De�ne projections FST and SND by FST � ID �BOT � and SND � BOT �

ID � Then SND � swap � swap �FST � indicating that if the second component of the

result of swap need not be de�ned� then the �rst component of its argument need

not be de�ned� Operationally� if the second component of the result of swap will

not be evaluated then the �rst component of any argument of swap need never be

evaluated� Here we say that swap is FST strict in an SND�strict context� In the

previous example� we could have said that f was BOT strict in an ID�strict context�

��

CHAPTER �� ANALYSING FUNCTIONS WITH PROJECTIONS ��

In both examples� projections only speci�ed upper bounds on required de�nedness
by

discarding unnecessary information� and therefore only upper bounds on evaluation�

We have already described the characterisation of head strictness using the projection

H � The projection H speci�es both upper and lower bounds on de�nedness� though

in a conditional way� if the head of any cons cell is not de�ned� then the tail need

not be de�ned either� and if a cons cell is de�ned� then the head must be as well�

As shown in �WH���� by de�ning the projection STR on every lifted domain U� by

STR � � � �

STR
lift �� � � �

STR
lift v� � lift v � if v �� � �

we have that f is strict if and only if STR � f� v f� � STR� Projection STR speci�es a

lower bound on de�nedness
must not be �
and a lower bound on evaluation
must

evaluate to WHNF�

Last we show that tail strictness can be captured using projections� De�ne projection

T on lists to map all partial and in�nite lists to � and act as the identity on �nite

lists� Then f is tail strict if f� � f� �
T� � STR��

In projection�based backward strictness analysis� the central problem is� given � and

f � to �nd � such that � � f � � � f � �� or equivalently� � � f v f � �� This inequality

is the safety condition
for f � �� and ��� We may always take � to be ID� but this tells

nothing about f � smaller � is more informative� The analysis is �backward� because

information �ow is from result to argument� the reverse of evaluation or application�

Forward Binding
time Analysis� Launchbury �Lau��� hit upon the idea of using

projections to encode the presence or absence of data� In the simplest case� a projec�

tion used for this purpose acts as the constant � function
signifying no information�

on that part of the data domain for which the data is unknown
dynamic�� and acts

as the identity on that part for which it is known
static�� We give a simple example�

Let swap denote swap as before� and suppose that the �rst component of its argument

pair is static� which is encoded by FST � Then the second component of the result is

determined� encoded by SND � and we have SND � swap � swap �FST � Determining

precisely what part of the output is determined is in general not computable� hence

the goal is� given � and f � to determine � such that � � f v f � �� This may be read as

stating that if ��s worth of the input is known� then at least ��s worth of the output is

determined� Launchbury �Lau��a� showed that this safety condition satis�es� and in a

sense which he formalises� is equivalent to the correctness condition for binding�time

analysis in the general framework of Jones �Jon����

CHAPTER �� ANALYSING FUNCTIONS WITH PROJECTIONS ��

It is also possible to obtain strictness information by reversing the direction of analy�

sis� that is� given � and f � to determine � such that � � f v f � �	 on the face of it the

safety condition has no obvious directional bias �Lau��b� but Hughes and Launch�

bury have suggested that for projection�based program analysis that the backward

direction is intrinsically the more powerful �HL����

Forward Termination Analysis� Let us reverse the inequality in the safety con�

dition� The liveness condition�
for f � �� and �� is � � f w f � �� Then� for example�

we have STR � f� w f� � STR i� x �� � implies f x �� �� If f denotes f � then in op�

erational terms this means that if the argument of f terminates� then so does the

application of f to its argument� Turning this around� we have f x � � implies

x � �	 if the application does not terminate� then neither does the argument�

Next suppose that f denotes f � and H � f w f � ID� Then for any application f e�

if evaluation of a cons node of the result terminates� the evaluation of the head is

certain to terminate� so if evaluation of a cons node is ever forced� the head may be

safely evaluated as well� Here H captures the head�termination property�

If f denotes f and
STR � T�� � f� w f� � ID � then evaluation of the spine of any

application of f is guaranteed to terminate	 we will call this the tail termination

property�

Finally� suppose BOT � f w f � ID and f denotes f � This means that applications

of f always fail to terminate	 if BOT � f w f � BOT then failure of the argument to

terminate implies failure of the application to terminate
that is� f is strict��

The natural direction for termination analysis seems to be forward� we know in ad�

vance the termination properties of the primitive constants and we wish to determine

how far an expression can be evaluated without risking divergence� Thus for forward

termination analysis the goal is� given f and �� to determine as small a � as possible

such that � � f w f � ��

Backward Security Analysis� Reversing the inequality in the correctness condi�

tion for strictness analysis gives the correctness condition for termination analysis	

what kind of analysis has as its correctness condition the result of reversing the in�

equality in the correctness condition for binding�time analysis� It seems to be the

following� if we are certain that parts of the input are unknown� then we can show

�The meaning of �liveness� here is distinct from its meaning in Chapter
 in connection with
liveness analysis� Hereafter we use the term only in the new sense�

CHAPTER �� ANALYSING FUNCTIONS WITH PROJECTIONS ��

that certain parts of the output are unknowable	 in the other direction� if we re�

quire certain parts of the output to be unknowable without supplying dynamic data�

we may determine a su�cient
ideally least� amount of information to exclude from

the input during partial evaluation� For example� if we were to partially evaluate

a program that produces some sensitive information� we might want to know what

information to exclude from the static data at partial�evaluation time so that the

sensitive information is not revealed until some particular input is given� Similarly� if

we wish to guarantee that input and output are correctly interleaved� but otherwise

provide as much information as possible at partial�evaluation time� it might be useful

to know what is the least information that can be excluded from the the static input�

Thus the goal of projection�based backward security analysis is� given f and �� to

determine the greatest � that satis�es the liveness condition � � f w f � �� Since

backward security analysis has no demonstrated practical use� except for a brief con�

sideration of �nding projections � satisfying the liveness condition
Section ����� it

will not be developed further�

The safety and liveness conditions are so named because of their similarity to the

safety and liveness conditions of Mycroft�s �Myc��� strictness and termination analysis

techniques
these conditions are nicely summarised in �Abr����� There superscript %

denotes the abstraction maps for strictness analysis� and superscript � the abstraction

maps for termination analysis	 the safety condition is

f x �� v f � x� �

and the liveness condition is

f x �� w f � x � �

Recall that jU j denotes the complete lattice of �nitary projections on domain U � If for

all of the projection�based analyses we take the the abstraction map for the argument

domain to be � � jU j� for functions f � U � V the identity
or the restriction of

f to the range of jU j�� and for the result domain � � jV j� we get Mycroft�s safety

and liveness conditions� Our case di�ers in that we are interested in more than one

abstraction of arguments and results� and that their interdependence depends on f �

Hence we take for each analysis the information to be recorded� the �abstraction� of f �

to be the appropriate map between jU j and jV j� Thus the abstraction of f for each

analysis is a projection transformer
a function from projections to projections� Any

projection transformer � such that � � f v f �
� �� for all � will be called a backward

strictness abstraction
BSA� of f � and this inequality is the backward safety condition

for � and f � Similarly� any � such that
� ���f v f �� for all � is a forward strictness

CHAPTER �� ANALYSING FUNCTIONS WITH PROJECTIONS ��

abstraction
FSA� of f 	 this inequality is the forward safety condition for � and f �

Any � such that
� �� � f w f � � for all � is a forward termination abstraction
FTA�

of f 	 and such that � � f w f �
� �� for all � is a backward termination abstraction

BTA� of f � For uniformity all of these inequalities will henceforth be called safety

conditions
rather than liveness conditions for the latter two��

Next we consider each of these analysis techniques in more depth� the strictness

abstractions �rst� then the termination abstractions� We observe that all of the

safety and liveness conditions are
jointly� inclusive in all of their identi�ers� and

that continuous projection transformers
between given projection domains� form a

complete lattice� All functions to be analysed are assumed continuous�

�� Backward Strictness Abstraction

For backward strictness abstraction� smaller is better� We start with some negative

results� showing �how well we can�t do�� then show what we can do�

No least BSAs� In general� a function has no minimal BSA� Before showing this

it is useful to develop some technical results�

Proposition ���

If g and h are monotonic� g v id � h � id � and g �v h� then g � h� h � g � g� �

Proposition ���

If g and h are monotonic and approximate the identity� and � � f v f � g and

� � f v f � h� then � � f v f � h � g�

Proof

Composing � with both sides of the inequality � � f v f � g gives � � f v � � f � g

since � is idempotent� Composing each side of the inequality � � f v f � h with g

gives � � f � g v f � h � g� Transitivity of v gives � � f v f � h � g� �

For all c� d � U with d v c de�ne �cd to be the greatest projection that maps c to d�

that is�

�cd � jU j �

�cd x � x u d � if x v c �

�cd x � x � otherwise �

Then �cd is the largest monotonic function approximating the identity that maps c

to d�

CHAPTER �� ANALYSING FUNCTIONS WITH PROJECTIONS ��

Proposition ���

For all projections � and values c and d with d v c the composition � � �cd � � is a

projection	 if � c �v d then � � �cd � � � ��

Proof

Let �� c� and d be �xed with d v c� Let v be any value and let v� be � v� If v� �v c

then v� is a �xed point of �cd as well as of �� If v� v c then
� � �cd� v� approximates

d and so is a �xed point of �cd as well as of �� Hence the elements of the image of

� � �cd � � are �xed points of both � and �cd� hence of � � �cd � �� If � c �v d then d � c�

so �cd � id and � �v �cd� so � � �cd � � � � by Proposition ���� �

Proposition ���

If � � f v f � �� and � � f v f � �� and �� �v �� then there is a projection �� � ��

satisfying � � f v f � ���

Proof

If �� �v �� then there is some c such that �� c �v �� c� Let d � �� c� so �� v �cd and

�cd � id and � � f v f � �cd� By Propositions ��� and ��� the composition �� � �cd � ��

is a projection satisfying � � f v f � �� � �cd � ��� Since �� c �v d it must be that

�� �v �cd� and since �cd � id � by Proposition ��� we have �� � �cd � �� � ��� �

Now we de�ne a function that has no least or minimal BSA� Let � � f���g with

� � �� and � be the least solution of U � U� so that � � flift i � j i
 �g � f�g�

where lift i � � � for all i� Then� is a complete lattice with a single in�nite element

�� The dual �� is a complete lattice resulting from the reversing of the ordering in

�� so its top element is �� and its bottom element is �� �
Interestingly� �� has no

in�nite elements despite having in�nite depth�� Let f � �� � � be the continuous

function de�ned by f �� � � and f x � � otherwise� Let � be any projection

such that ID � f v f � �� let c be any �xed point of � other than �� and d be any

value strictly less than c other than �� � Then ID � f v f � �cd and � �v �cd� so by

Proposition ��� there is a projection strictly less than � satisfying the safety condition�

Leastness and equality� Even when a least BSA exists� it may not map projections

to pointwise�least� or even pointwise�minimal� functions�
In other words� when � is

the least projection such that � �f v f � � there may be a function g strictly less that

� lacking idempotence� continuity� or monotonicity such that � � f v f � g�� Consider

CHAPTER �� ANALYSING FUNCTIONS WITH PROJECTIONS ��

parallel or� de�ned by

por � Bool � Bool �

por
���� � � �

por
��� � � � �

por
� ��� � � �

por
� �� � � � �

por
tt � y� � tt �

por
x � tt� � tt �

The least projection � such that ID � por v por � � acts as the identity on
tt � tt��

The function por maps
tt � tt� and the two strictly smaller values
tt ��� and
�� tt�

to tt � but � cannot map
tt � tt� to either
�� tt� or
tt ���� since if � mapped
tt � tt�

to
�� tt� monotonicity of � would require that
tt ��� be mapped to
����� which

would violate the safety condition
the other case is symmetrical��

Finally� though it is possible to choose � small enough to get equality in the safety

condition in the last two examples� this is not generally possible� For example� let

f � �� �� and �� � � j � j� where � � f�� �� �g with � � � � �� and

f � � � � � � � � � � � � � �

f � � � � � � � � � � � � � �

f � � � � � � � � � � � � � �

Then � is the least projection such that � � f v f � �� but

� � f� � � � �
f � �� � � � �

� � f� � � � �
f � �� � � � �

� � f� � � � �
f � �� � � � �

that is� � � f �� f � ��

For por there are two pointwise minimal functions g satisfying ID � por v por � g 	

both are idempotent but not monotonic� Next we show that if there is a minimal

monotonic function approximating the identity that satis�es the safety condition then

it is the least monotonic function satisfying the safety condition and is a projection�

Continuity� The continuous extension of a monotonic function f is the unique

continuous function that agrees with f at �nite values	 the continuous extension of f

approximates f �

Proposition ��	

If g is a minimal monotonic function approximating the identity such that ��f v f �g

then g is a projection and is the least monotonic function satisfying the inequality�

CHAPTER �� ANALYSING FUNCTIONS WITH PROJECTIONS ��

Proof

Let g be a minimal monotonic function approximating the identity such that � � f v

f �g� Let g� be the continuous extension of g� Since the predicate
� �f� x v
f �g�� x

is inclusive in x� and g is minimal� it must be that g � g�� By Proposition ��� we have

� � f v f � g � g	 since g is minimal g must be idempotent� Suppose g were not least�

Then there would be some values c and d with d � c such that � � f v f � �cd and

g �v �cd� Then � � f v f � g � �cd � g by Proposition ���� and g � �cd � g � g contrary

to the supposition that g is minimal� �

Proposition ���

If � is a minimal BSA of f then � is the least BSA of f and is continuous�

Proof

That minimality implies leastness follows from Proposition ���� That leastness implies

monotonicity also follows from Proposition ���� Monotonicity and minimality imply

continuity by inclusivity of the safety condition� �

Henceforth we consider only continuous BSAs�

Ordering� For f� v f� and �� a BSA of f�� there does not necessarily exist a BSA

�� of f� such that �� v ��� nor for �� a BSA of f� does there necessarily exist a BSA

�� of f� such that �� v ��� In particular� when least BSAs exist there is no order

guaranteed between them� For example� consider all of the monotonic functions from

� to �� de�ned by

bot � � � � id � � � � top � � � �

bot � � � � id � � � � top � � � �

There are only two projections on �� namely ID and BOT � The least BSAs of bot and

top are the same� the function that maps both ID and BOT to BOT � and the least

BSA of id is the identity� Here id v top but there is no BSA of id that approximates

���BOT 	 also� bot v id and again there is no BSA of id that approximates ���BOT �

Thus when least BSAs exist the mapping to them may not be monotonic�
In Sec�

tion ����� we will de�ne an order on functions such that the mapping is monotonic��

Non
monotonicity� It is this non�monotonicity that gives backward strictness ab�

straction its unusual power� To make this clear we review some concepts from the

BHA framework for abstract interpretation� A property on a domain is characterised

by the set of domain elements that satis�es it� so a property may be regarded as

just a subset of a domain� In the BHA framework properties
abstract values� must

CHAPTER �� ANALYSING FUNCTIONS WITH PROJECTIONS ��

be Scott�closed sets
non�empty downward�closed sets which contain lubs for all di�

rected subsets� The property of function f that f � f �BOT � and the head�strictness

property f � f �H� are not downward closed� Kamin �Kam��� gives a di�erent ap�

proach to identifying properties that cannot be captured in the BHA framework�

based on the fact that abstraction maps
the maps from standard domains to ab�

stract domains
must be monotonic� He calls a property P on U monotonic abstract

if there exists a �nite domain V
the abstract domain� and monotonic function
the

abstraction map� from U to V such that there is a partitioning of V into two parts

such that all elements with property P are mapped into one part� and all elements

that do not have property P are mapped into the other part� He shows that head

strictness is not a monotonic abstract property� thereby showing that head strictness

cannot be captured in the BHA framework�

Restriction of projection transformer domains� The next two propositions

show that we may reasonably restrict the space of projection transformers used for

backward strictness abstraction�

Proposition ���

If � is a BSA of a function f � then there is a strict BSA � � of f such that � � v � �

Proof

For all f we have BOT � f v f � BOT � De�ne � � BOT � BOT � and � � � � � � if

� �� BOT � then � � v � and � � is continuous since � is� �

Corollary ���

The least BSA of a function
if it exists� is strict� �

If �� � f v f � �� and �� � f v f � ��� then certainly �� � f v f �
�� t ��� and �� � f v

f �
��t ���� Since lub on projections is pointwise� we have
��t����f v f �
��t ����

Now if � is some BSA of f that maps �� to �� and �� to ��� then monotonicity of �

requires that �
�� t ��� be greater than �� t ��� In this sense we can do no better

than taking �
�� t ��� � �� t ��� The following elaborates�

A projection transformer � is distributive if for all sets of projections X we have

�

F
X � �

F

� X �
this property is sometimes called linearity�� Distributivity is a

strictly stronger requirement than continuity since the set X need not be directed�

Now de�ne for each �nite value c the characteristic projection �c for c as

�c x � c� if c v x �

�c x � �� if c �v x �

CHAPTER �� ANALYSING FUNCTIONS WITH PROJECTIONS ��

Recall that K
U� is the set of �nite elements of domain U � Given domain U the set

f�u j u � K
U�� u �� �g is the t�basis of jU j	 every element of jU j is the lub of some

subset of the t�basis� and no element of the t�basis is the lub of any subset not con�

taining that element�
The lub of the empty subset of a lattice is its least element� here

BOT � which is not in the t�basis�� In fact� � �
F
f�u j � u � u� u � K
U�� u �� �g

this shows that a projection is determined by its �nite non�bottom �xed points�

Clearly every strict distributive � � jU j � jV j is determined by its behaviour on

the t�basis of jU j�

Proposition ���

If � is a BSA of f then f has a distributive BSA less than � �

Proof

Let � be a BSA of f � U � V � and let � � be the distributive projection transformer

that agrees with � at BOT and on the t�basis of jV j� Continuity of � requires that

� � v � � Let X be any subset of the t�basis for jV j� Then

�� � X � � � f v f �
� � ��

� �� � X � � � f v f �
F

� � X �

�

F
X � � f v f �

F

� � X � �lub pointwise�

�

F
X � � f v f �
� �

F
X �� �defn � ��

Since every projection is the lub of some subset of the t�basis� � � is a BSA of f � �

Corollary ���

The least BSA of a function
if it exists� is distributive� �

The distributive projection transformers form a complete lattice� including the con�

stant ID and BOT functions� but this lattice is not a sublattice of the projection

transformers because the pointwise glb of two distributive projection transformers

may not be distributive�
The situation is analogous to the projections forming a

complete lattice that is not a sublattice of the continuous functions�� Hence
in the

context of backward strictness abstraction� we de�ne �� u �� to be the greatest dis�

tributive projection transformer approximating their glb in the lattice of continuous

projection transformers� When least BSAs are known to exist and �� and �� are BSAs

of f � then the pointwise glb � of �� and �� is a BSA of f 	 by Proposition ��� there

is a distributive � � approximating � that is a BSA of � � and �� u �� by de�nition is

approximated by � �� hence �� u �� is a BSA of f � Finally� by Corollary ���� a least

BSA of f
if it exists� is distributive� so restriction to the distributive projection

transformers doesn�t exclude the �important� ones� This is partially summarised by

the following�

CHAPTER �� ANALYSING FUNCTIONS WITH PROJECTIONS ��

Proposition ����

If the pointwise glb of �� and �� is a BSA of f � then so is �� u ��� �

The strict distributive projection transformers form a complete sublattice of the dis�

tributive projection transformers� This has important implications for practical anal�

ysis in which the projection domains are �nite since we need only record the value of

a projection transformer at the t�basis of its argument domain� This also e�ectively

reduces the space of projection transformers under consideration� Henceforth� we will

consider only strict distributive BSAs�

Abstract composition� Next we state compositional properties of BSAs�

Proposition ����

If �� and �� are
strict�distributive� BSAs of f� and f� respectively� then �� � �� is a

strict�distributive� BSA of f� � f�� �

We take backward�strictness abstract composition to be reverse composition� and

de�ne �B to be abstract composition� that is� �� �
B �� � �� � ��	 abstract composition�

like ordinary composition� is associative� In general it is not the case that abstract

composition preserves leastness as the following example shows� De�ne

lub �
�� ��� � �

lub
x � y� � x t y �

There are seven projections on �� �	 their t�basis comprises ID � BOT � BOT � ID �

and �����	� The least BSA of lub maps BOT to BOT � BOT and ID to ID � ID �

The least BSA of �
x� y��
x��� �
�� ���
�� �� is determined by the mappings

�����	 �� ID � BOT �

ID � BOT �� ID � BOT �

BOT � ID �� BOT � BOT �

Reverse composition of corresponding least BSAs gives a BSA of lub � �
x� y��
x���

that maps BOT to BOT � BOT and ID to ID � BOT � However� the least BSA of

this function maps ID to BOT � BOT �

Least BSAs� One way to guarantee the existence of least BSAs is to restrict the

choice of functions� argument domains� This is developed following� First we need

some technical results�

Burn �Bur��a� calls those projections that map each argument either to itself or �

smash projections� In general if �� and �� are projections it is not the case that �� � ��

CHAPTER �� ANALYSING FUNCTIONS WITH PROJECTIONS ��

is a projection� since the composition may not be idempotent� When �� and �� are

smash projections� their composition is idempotent and hence is a projection�

Proposition ����

If �� is a smash projection and �� any projection then �� � �� is a projection equal to

�� u ��� Thus for � � f v f � �� and � � f v f � �� and at least one of �� and �� a

smash projection we have � � f v f �
�� u ����

The �rst part is trivial	 the second part then follows from Proposition ���� �

Proposition ����

If U is �nite then f � U � V has a least BSA�

This follows from Proposition ��� and the fact that a function with a �nite argument

domain cannot have an in�nite strictly�decreasing sequence of BSAs� �

Next we consider functions from domains de�ned as inverse limits of a restricted class

of retraction sequences� Let

fUi j i
 �g� f

i � �i� � Ui � Ui�� j i
 �g�

be a retraction sequence with inverse limit U�� such that each Ui is �nite� and the

image of each
i is downward closed
intuitively�
i maps Ui into the �bottom part�

of Ui��� without creating any �holes��� Let f� � U� � V be any continuous function

and � be a projection on V � Each element fi � Ui � V of the canonical family of

approximations of f� has a least BSA �i mapping � to some �i� Just as the fi agree

at common arguments� that is� fi � fi�� �
i� so each �i must agree at common

arguments� that is� �i � �i�� �
i	 this is a consequence of the images of the
i being

downward closed� Thus the �i form a family of approximations of a projection ��	

similarly the �i form a family of approximations� Further� since each �i is least� so is

��� We conclude that f has a least BSA that is determined by the canonical family

of approximations comprising the �i�

For the various entities de�ned as above� the sequence ffi � ��ig is ascending	 the

sequence f
�i �
��i � �i���� idV g is ascending	 each element of the second is the

least BSA of the corresponding element of the �rst� and the limit of the second is

the least BSA of the limit of the �rst� In contrast� as shown for bot � id � and top in

�� �� the corresponding result does not hold for an arbitrary increasing sequence of

functions on such domains�

Proposition ���	

If ffig is an increasing sequence of functions and �i is a BSA of fi for each i � thenF
f�ig is a BSA of

F
ffig�

CHAPTER �� ANALYSING FUNCTIONS WITH PROJECTIONS ��

Proof

If f�ig is increasing then the result follows from the fact that the safety condition

is
jointly� inclusive in � and f � If f�ig is not increasing� let the sequence f� �ig be

de�ned by � �� � ��� and � �i�� � � �i t �i��� Then
F
f� �ig �

F
f�ig� and � �i is a BSA of fi

for all i� �

It is interesting to note that we can de�ne
a domain isomorphic to� �� as the least

�xed point ofD � D�� where �� on domains adds a new top element� Each embedding

i maps the bottom element to the bottom element	 for all other elements� the top

element to the top element� next�to�top element to the next�to�top element� and so

on� Each projection �i does the reverse� and in addition maps the next�to�bottom

element to the bottom element� Note that the image of each
i for i
 � is not

downward closed since it does not include the next�to�bottom element�
It is helpful

to observe that each
i is like stricti�ed lift � and each �i is like drop��

The retraction sequences de�ned by domain equations using the primitive domains

and the various domain operators discussed in Chapter � have the property just

described�� This will be important when we later analyse functions denoted by expres�

sions in programming languages� since the domains involved will all be constructed in

this way� In particular� when �� and �� are incomparable BSAs of a denoted function

f � perhaps determined by di�erent means� we may safely conclude that �� u �� is also

a BSA of f � strictly better than either �� or ���

As an aside� we believe that a su�cient condition for every function in U � V to

have a least BSA is that every element u � U have a complete minimal cover
a

set of elements S such that u � s for all s � S
cover�� for all v � u there is some

s � S such that s v v
complete�� and for all s� t � S we have s v t implies s � t

minimal�� In �� the bottom element has no complete minimal cover��

����� Analysis of lifted functions

Even when a strict function has a least
most informative� BSA� that the function

is strict may not be determinable from this BSA� Thus a BSA of a function is an

abstraction in the sense that it may not contain all of the information in the function�

To see this� consider again bot � id � and top in �� �� The least BSAs of bot and top

are the same� the constant BOT function� and bot is strict and top is not� Further�

so long as the result domain is not �� no single BSA can determine that any function

�To make this work for Int we must de�ne it using recursion� e�g� Int � �� � Int � ��� since Int

is not �nite�

CHAPTER �� ANALYSING FUNCTIONS WITH PROJECTIONS ��

is strict� since any BSA of any function is a BSA of every constant function� This

example also shows that the least BSA
or set of all BSAs� of a function sometimes

determines that function
here id� and sometimes does not
here bot and top��

Recall that f is strict if and only if STR � f� v f� � STR� Put another way� a function

f is strict if and only if there is a BSA � of f� such that � STR v STR
de�ne

� BOT � BOT � � � � STR if � v STR and � �� BOT � and � � � ID otherwise�� For

any function f � the function f� is strict and bottom re�ecting� For all domains U and

V � the operator �� is an isomorphism from the domain of continuous functions U � V

to the domain U�
sb
� V� of continuous� strict� bottom�re�ecting functions� Though

the function f� contains no more information than f � projections on the argument and

result domains of f�� and hence a BSA for f�� may contain more information than

those for f since the projections on the lifted domains have the additional degree

of freedom to map values to the new bottom element� Intuitively� a value that is

mapped to the new bottom element may be thought of as �not su�ciently de�ned��

or �unacceptable�� Projections on lifted domains may then be regarded as specifying

lower bounds on the de�nedness of values in the corresponding unlifted domain� and

thus lower bounds on the degree of evaluation of expressions that take values in the

unlifted domains� For example� STR � jU� j maps lift �
which corresponds to � in

U � to �� indicating that � in U is not an acceptable value� If expression f denotes

function f � then STR � f� v f� � STR may be interpreted as �if the result of f must

be more de�ned than �� then the argument of f must be more de�ned than �� that

is� f is strict� This is another example of a direct operational reading of projections�

STR may be thought of as specifying evaluation of
the syntactic construct denoting�

its argument�

The BSAs of a function f� can reveal more than just simple strictness in f � On a

given domain� the smash projections form a complete sublattice of the projections

that includes ID and BOT �

Proposition ����

Given strict bottom�re�ecting function f and projection � there is a least smash

projection � such that � � f v f � �� If � is a smash projection we have � � f � f � ��

Proof

We can describe � exactly� Let S be the set of values that � maps to �� and let T

be the inverse image of f of that part of the range of f in S � Then � maps precisely

those elements in the downward closure of T to �� �

Proposition ����

Every strict bottom�re�ecting function is determined by its least BSA with range in

CHAPTER �� ANALYSING FUNCTIONS WITH PROJECTIONS ��

the smash projections�

Proof

We show that for strict bottom�re�ecting f and g with least BSAs �f and �g with

range in the smash projections that f �� g implies �f �� �g� Suppose f �� g� De�ne

NOKc by

NOKc x � �� if x v c �

NOKc x � x � otherwise �

Then NOKc is always a smash projection� Choose x such that f x �� g x� Now

�f NOK�f x	 x � �	 if �g NOK�f x	 x �� � then �f and �g are shown to di�er� If

�g NOK�f x	 x � � then it must be that g x � f x� then �g NOK�g x	 x � �� and

�f NOK�g x	 x �� �� so �f and �g are shown to di�er� �

Evidently� a strict bottom�re�ecting function is determined by its least BSA with

both domain and range in the smash projections�

Corollary ����

Every BSA of strict bottom�re�ecting function f is approximated by a BSA that

determines f � Hence f is determined by its least BSA if it exists� �

A simple consequence is that if f is strict and � is any BSA of f�� then there is a

BSA � � of f� such that � � v � and � � STR v STR�

Henceforth� when we wish to determine strictness properties of some function f we

will �nd BSAs of f� rather than of f �

Projections on lifted domains� Besides ID� BOT � and STR� there is one further

projection ABS de�ned on every lifted domain�

ABS � � � �

ABS
lift v� � lift � �

Operationally� ABS discards its argument� it maps all values corresponding to those

in the unlifted domain
those of the form lift v
to the value lift � corresponding

to � in the unlifted domain� indicating that no information is required� Then for

example� we have ABS � f� v f� � ABS for all f �

So long as U di�ers from the one�point domain� projections ID � ABS � STR� and BOT

on U� are all distinct and form a lattice in which ABS and STR are incomparable�

All other projections lie between ID and ABS or between STR and BOT � In fact�

there is an isomorphism between the lattice of projections between ID and ABS and

the projections between STR and BOT � This isomorphism maps each projection

CHAPTER �� ANALYSING FUNCTIONS WITH PROJECTIONS ��

between STR and BOT to its least upper bound with ABS 	 its inverse maps each

projection between ID and ABS to its greatest lower bound with STR� Further� every

projection in jU� j between ID and ABS is of the form �� with � � jU j� Hence every

projection in jU� j is either of the form �� or �� u STR�
A revealing observation is

that jU� j is isomorphic to jU j ��� where
���� and
�� lift �� in the latter domain

correspond to ��uSTR and �� in the former� respectively�� To get the e�ect of lifting

a projection and taking the glb with STR we introduce the operator �� de�ned by

�� � � � �

��
lift �� � � �

��
lift v� � lift
� v�� if � v �� � �

Then �� � �� u STR� and �� � �� t ABS � Further� we have STR � ID� and

ABS � BOT�	 together with the facts
BOTU�� � BOTU� and
IDU�� � IDU� we

could dispense with the special names STR and ABS �

Operationally� projections of the form ��
those below STR
specify evaluation
���s

worth �� and projections of the form ��
those above ABS
specify that if evaluation

is ever demanded� ��s worth will be performed�
Again� this is formalised in �Bur��a���

The notion of ���s worth will be elaborated later� Hence projections of the form ��

will be called eager since they demand evaluation� while those of the form �� will be

called lazy since they don�t� Note that the smash projections are all eager�

The & operation� Though abstract composition does not preserve leastness� it

does preserve leastness with respect to smash projections� Following this is made

precise	 �rst we de�ne a new operation & on projections�

� & �� x � �� if � x � � or � x � � �

� & �� x �
� t �� x � otherwise �

Thus & is like t except that if either of its arguments maps some value to �� then

so does its result� hence & approximates t� It is easy to show that & is continuous�

associative� commutative� idempotent� and distributes over t
but not vice versa��

The least projection BOT is a zero of & since BOT & � � BOT for all �� On lifted

domains the identity for & is BOT�� For smash projections & coincides with u� and

for lazy projections & coincides with t�

Proposition ����

Given projection � � jU� j there is a least smash projection �s and least lazy projec�

tion �l such that � � �s u �l � hence �s x � � i� � x � ��

CHAPTER �� ANALYSING FUNCTIONS WITH PROJECTIONS ��

Proof

De�ne �s � � & ID� � � &
BOT� t ID�� � � t
� & ID��� so if � is lazy �s � ID��

and if � is eager �s � � & ID�� De�ne �l � � t BOT�� �

Proposition ���

The projection � is least such that � � f� v f� � � i� �s is the least smash projection

such that �s � f� v f� � �
s and �l is a least lazy projection such that �l � f� v f� � �

l �

The key facts are that � � f� v f� � �s i� �s � f� v f� � �s� and � � f� v f� � �l i�

�l � f� v f� � �
l
�

We will say that a BSA � of f� is least with respect to smash projections if for all �

and � �
� ��s the projection � is the least smash projection such that � �f� v f� � ��

Proposition ���� shows that every lifted function has a BSA that is least with respect

to smash projections�

Proposition ����

Abstract composition preserves leastness with respect to smash projections� so the

abstract composition of such BSAs of strict bottom�re�ecting functions determines

their composition� �

We have noted that for every f we have BOT � f v f �BOT 	 obviously BOT is the

least projection that can appear on the right�hand side� Also� ABS � f� v f� �ABS 	

this follows from the fact that � � f v f � � i� �� � f� v f� � ��	 here ABS is the least

projection that can appear on the right�hand side� This suggests that in addition to

requiring every BSA to be strict and distributive� we require BSAs of lifted functions

to map ABS to ABS � In �WH��� an operator �guard is de�ned to facilitate the

de�nition of projection transformers� in essence to guarantee that every BSA � is

strict� maps ABS to ABS � and if � �� � �� then � �� � � t ABS � Given the �rst

two properties� the third property is just a special case of distributivity� Here we will

say that a projection transformer has the guard property if it is strict� maps ABS to

ABS � and is distributive� The projection transformers with the guard property form

a complete lattice� The following partially summarises�

Proposition ����

Given any BSA of a lifted function f�� there is a smaller BSA with the guard property�

Hence� the least BSA of f�� if it exists� has the guard property� and every BSA of f�

is approximated by a BSA with the guard property that determines f � �

The following states compositional properties of BSAs of lifted functions�

Proposition ����

If �� and �� have the guard property� then so has �� �B ��� �

CHAPTER �� ANALYSING FUNCTIONS WITH PROJECTIONS ��

In summary� for continuous functions it is sensible to restrict attention to continuous�

strict� distributive BSAs� and for lifted functions to those with the guard property�

Henceforth� when we wish to determine strictness properties of some function f �

U � V we will �nd BSAs � � jV� j
B
� jU� j of f� � U�

sb
� V�� where

B
� constructs

the lattice of projection transformers with the guard property� In practical terms

this means that we need only record the value of a BSA at the t�basis of its eager

arguments� As a simple example of the potential savings� there are ��� monotonic

projection transformers from fID�� ID��BOT��BOT�g to itself� but only four with

the guard property� determined by the mapping of the single projection ID��

����� Stability and backward analysis

Though an arbitrary continuous function may not have a least BSA� there is a class

of functions� the stable functions� for which least BSAs always exist� The theory of

stability was developed by Berry �Ber��� in an attempt to extend the characterisation

of sequential functions to include higher order functions� At �rst order the stable

functions are a superset of the sequential functions� and this is hypothesised to be

the case at higher order� Hunt was the �rst to note that every stable function has a

least BSA �Hun��a�� This section recapitulates and extends his results� Hunt proved

Proposition ����� the other results are new�

De�nition

A continuous function f is stable if for all x and y such that y v f x� there exists a

least value M
f� x� y� v x such that y v f
M
f� x� y���

The simplest function that is continuous but not stable is lub �
�� ��� �	 there is

no least value that lub maps to �� However� parallel�or is regarded as the archetyp�

ical non�stable function� and it plays an important role in the development of the

theory of stability� An example
due to Berry� of a function that is stable but not

sequential is the least monotonic function h such that h
tt �� ��� � h
�� tt �� � �

h
� ��� tt� � tt � Note that h is not the three�argument analog of parallel�or
which

is not stable�� since h
� � tt ��� � �� Curien �Cur��� states that the stable func�

tions are intermediate between the continuous functions and the functions denoted

by his concrete data structures� which seemingly characterise precisely the sequential

functions�

Following is a well�known and useful consequence of the de�nition of stability�

Proposition ����

Given stable f � for all x�� x� such that there exists y such that x�� x� v y
that is�

CHAPTER �� ANALYSING FUNCTIONS WITH PROJECTIONS ��

x� and x� are consistent�� we have f
x� u x�� �
f x�� u
f x���

Proof

We have
f x�� u
f x�� v f y
monotonicity of f�� so there is a least x� v y such

that
f x�� u
f x�� v f x�� Since x�� x� v y it must be that x� v x�� x� and hence

x� v x� u x�� so f
x� u x�� w
f x�� u
f x��� However� f
x� u x�� v f x�� f x�� so

f
x� u x�� v
f x�� u
f x��� We conclude that f
x� u x�� �
f x�� u
f x��� �

Proposition ���	

Every stable function has a least BSA that maps projections to functions that are

pointwise least�

Proof

Given projection � and stable f there is a pointwise�least function g such that � �

f v f � g� We need only show that g is monotonic� then the result follows from

Propositions ��� and ���� Suppose g were not monotonic� then for some x� � x�

we have g x� �v g x�� Now �
f x�� v f
g x�� and �
f x�� v f
g x��� so

�
f x�� v f
g x��uf
g x�� � f
g x�ug x�� since f is stable� but
g x�ug x�� � g x��

contrary to g being least� �

We write j f j to denote the least BSA of f � When f is stable we get a stronger

composition property�

Proposition ����

For stable functions� abstract composition preserves leastness� that is� when f� and

f� are stable we have j f� � f� j � j f� j �
B j f� j� If f� is stable with least BSA �� and

f� is continuous with least BSA �� then �� �
B �� is the least BSA of f� � f��

Note that this does not in general hold the other way around� that is� �� �B �� may

not be the least BSA of f� � f�
an example is lub � �
x� y��
x��� given earlier�� �

Recall that the mapping of functions to their least BSAs
when they exist� is not

monotonic in the standard ordering	 it is however monotonic in the stable ordering�

De�nition

For stable f and g the stable ordering vs is de�ned by f vs g i� f v g and for all x�

y� if y v f x then M
f� x� y� � M
g� x� y��

Thus the stable ordering
viewed as a relation on stable functions� is a subset of

the standard ordering� The set of stable functions between two domains forms a

domain under the stable ordering� with lub and glb de�ned pointwise just as for

continuous functions� In particular� a sequence of functions that is ascending in the

CHAPTER �� ANALYSING FUNCTIONS WITH PROJECTIONS ��

stable ordering is ascending in the standard ordering� the lub of the sequence is stable

and is the same as its lub in the space of continuous functions�

It is worth getting an intuitive understanding of the stable ordering� If f vs g � then

g may give more information than f for the same argument� but g requires the same

least amount of informationM
f � x � y� below x to produce the information in y � Thus

bot �s id and bot �s top� but id �vs top because id requires strictly more information

from its argument to produce � than does top� In the stable ordering id and top are

incomparable� This emphasises that the existence of the lub of two stable functions in

the standard ordering does not imply the existence of the lub in the stable ordering�

Indeed� arbitrary lubs are a prime source of parallel
non�sequential� functions�

The operations �� �� �� ����� currying� and uncurrying� and composition are stable

and map stable functions to stable functions� The functions smash� unsmash� ini�

outi � lift � and drop are all stable� as are constant functions� identity� glb� and the

usual arithmetic� boolean� and comparison operations�

Proposition ����

For all stable functions f and g� we have that f vs g implies j f j v j g j�

Proof

Let f� g � U � V be stable functions with f vs g� and let � � jV j� Then by the def�

inition of vs we have f v g and for all x we have M
f� x� �
f x�� � M
g� x� �
f x���

Now since f v g we have �
f x� v �
g x�� so thatM
f� x� �
f x�� vM
g� x� �
g x���

since M is monotonic in its third argument� Since M
f� x� �
f x�� � j f j � x� and

similarly for g� we have that f vs g implies j f j v j g j� �

Proposition ����

If ffig is directed in the stable ordering� then
F
fj fi jg � j

F
ffig j�

Proof

By Proposition ���� we have j fi j v j
F
ffig j for all i� so

F
fj fi jg v j

F
ffig j� On the

other hand� it is clear from the safety condition that
F
fj fi jg is a BSA of fi for all

i� hence by inclusivity
of the safety condition in f� j
F
ffig j v

F
fj fi jg� hence the

result� �

Thus the mapping of stable functions to their least BSAs is continuous in the stable

ordering� In other words the predicate P
f� �� that asserts that � is the least BSA of

stable f is inclusive in the stable ordering on f �

We might ask whether there is some ordering vi on arbitrary continuous functions

that makes the property � � f v f �
� �� of f Scott closed� In fact there is� and it is

similar in spirit to the stable ordering�

CHAPTER �� ANALYSING FUNCTIONS WITH PROJECTIONS ��

De�nition

Let the ordering vi on continuous functions be de�ne by f vi g if f v g and for all

x and y with y v f x� that x� v x and y v g x� implies y v f x��

Proposition ����

If f vi g and � is a BSA of g then � is a BSA of f �

Proof

Suppose � �g v g � �� Let x be �xed� and let y �
� �g� x and x� � � x� Now y v g x�

so y v f x� since f vi g� Also�
��f� x v
��g� x since f v g� so
��f� x v
f ��� x�

as required� �

If ffig is the canonical family of approximations of a function de�ned on the restricted

class of domains given before� we have that ffi ���ig is increasing in the vi ordering�

fi ���i vi

F
ffi���ig for all i
where

F
here is in the standard ordering�� each fi���i

has a least BSA �i� the sequence f�ig is ascending and �� �
F
f�ig is the least BSA

of f� �
F
ffi � ��ig�

Lastly� we observe that on the stable functions vi coincides with vs�

We conjecture general limit properties for vi like those for vs� if ffig is increasing in

the vi ordering then fi vi

F
ffig for all i
where

F
again is in the standard ordering��

and if ffig is ascending in the vi ordering and each fi has least BSA �i� then f�ig is

ascending and �� �
F
f�ig is the least BSA of f� �

F
ffig� We do not pursue this

further since it is not clearly of use� in particular� recursive function de�nitions do

not necessarily give rise to chains of approximations ascending in this ordering��

Proposition ���

If � has the guard property then � is determined by the set of stable lifted functions

of which it is a BSA� and this set is Scott closed in the stable ordering�

Proof

Let ��� �� � jV� j
B
� jU� j with �� �� ��� Then V ��� �� and for some �nite v � V �

v �� �� it must be that ��
�v�� �� ��
�v��� Let �� � ��
�v�� and �� � ��
�v��� For

some �nite x� it must be that �� x� �� �� x�� so x� �� �	 without loss of generality

assume that �� x� �w �� x�� so �� x� �� �� Let g � U�
sb
� V� be de�ned by

g x � lift v � if x w �� x�

g x � lift �� if x �w �� x�� x �� �

g x � � if x � � �

Then g is a stable lifted function and �� is a BSA of g� Now
�v��
g x�� � lift v � but

g
�� x�� v lift � because �� x� �� �� x�� so �� is not a BSA of g� We conclude that

CHAPTER �� ANALYSING FUNCTIONS WITH PROJECTIONS ��

every projection transformer � with the guard property is the lub of the least BSAs

of the lifted stable functions of which it is a BSA� That this set of functions is Scott

closed then follows from Propositions ���� and ����� �

Thus a projection transformer with the guard property which is not the least BSA of

any continuous function is determined by the set of stable lifted functions of which

it is a BSA� A simple example is the projection transformer in j ��� j
B
� j ��� j that

maps STR to ID � which is the lub of the least BSA of the identity
which maps STR

to STR� and the lifted constant top function
which maps STR to ABS��

Proposition ����

Suppose F maps lifted continuous functions to lifted continuous functions such that

stable functions are mapped to stable functions� If T maps projection transformers

with the guard property to projection transformers with the guard property� is dis�

tributive� and maps the least BSA of every stable function f to the least BSA of

F
f�� then T is the least function such that if � is any BSA of any function f then

T
�� is a BSA of F
f��

Proof

Let � have the guard property and let S be the set of lifted stable functions of which

� is a BSA� Then T
�� must be at least as large as
F
f�S jF
f� j� Now

F
f�S jF
f � j

�
F
f�S T
j f j� �jF
f� j � T
j f j��

� T

F
f�S j f j� �T distributive�

� T
�� �Proposition ����� �

Hence T is least� �

We might have hoped to be able to de�ne abstract composition to preserve leastness	

it is a simple corollary that this is not possible�

Corollary ����

Abstract composition �B is the least function such that if �� and �� have the guard

property and are BSAs of lifted functions f� and f� respectively� then �� �B �� is a

BSA of f� � f�� �

����� Functions of several arguments

We write hf�� � � � � fni to mean �x�
f� x� � � � � fn x�� and hhf�� � � � � fnii to mean smash �

hf�� � � � � fni	 both preserve stability� Given BSAs of the lifted functions fi� � 	 i 	 n�

we will need to �nd a BSA of hhf�� � � � � fnii� This is developed following�

CHAPTER �� ANALYSING FUNCTIONS WITH PROJECTIONS ��

The t�basis for the projections on a smash product domain is a subset of the projec�

tions that can be expressed as smash products�

Proposition ����

For all � � jU� � � � �� Un j� we have � �
F
f�� � ���� �n v �g�

Proof

Recall that a projection is determined by its �nite non�bottom �xed points� For

any �nite non�bottom c there is a least projection that has c as a �xed point
it is

the characteristic projection �c
in fact c is its only non�bottom �xed point�� For

notational simplicity we will consider the binary case� Let � � jU � V j and
u� v� be

a �nite �xed point of �� It is simple to verify that ��u�v	 � �u � �v� from which the

result follows� �

Thus distributive projection transformers from projections on smash product domains

are determined by their behaviour on arguments expressible as smash products� Use of

smash product is crucial	 the corresponding result does not hold for ordinary product�

Proposition ����

If f is strict and bottom re�ecting and if for some x and � we have �
f x� � � then

f has a BSA � such that � � x � ��

This follows directly from Proposition ���� �

Proposition ���	

If �i is a
least� BSA of fi for � 	 i 	 n then a
least� BSA of hf�� � � � � fni maps

�� � � � �� �n to
�� ��� t � � � t
�n �n�� �

Proposition ����

If �i is a
least� BSA of strict and bottom�re�ecting fi for � 	 i 	 n then hhf�� � � � � fnii

has
least� BSA

�� �
F
f
�� ��� & � � � &
�n �n� j �� � � � �� �n v �g �

As a special case this maps �� � � � �� �n to
�� ��� & � � � &
�n �n��

Proof

We need only show that
�� ��� & � � � &
�n �n� is
least� such that
�� � � � �� �n� �

hhf�� � � � � fnii v hhf�� � � � � fnii �

�� ��� & � � � &
�n �n��� We show leastness for the

binary case� Let x� ��� ��� ��� and �� be �xed and �� � �� �� and �� � �� ���

If
�� � ���
hhf�� f�ii x� � � then either ��
f� x� � � or ��
f� x� � �� so by

Proposition ���� either �� �� x � � or �� �� x � �� hence

�� ��� &
�� ���� x � ��

If
�� � ���
hhf�� f�ii x� �� � then
�� � ��� hhf�� f�ii x �
��
f� x�� ��
f� x��� so

�� ���&
�� ���� x �

�� ���t
�� ���� x� and the result follows from Proposition �����

�

CHAPTER �� ANALYSING FUNCTIONS WITH PROJECTIONS ��

Lastly� we look more closely at &� A projection transformer � is u�distributive if for

all sets of projections X we have j j
� X � � �
j jX ��

Proposition ����

If ��� �� are projections� ��� �� are smash projections� and f�� f� are strict bottom�

re�ecting functions such that �� � f v f � �� and �� � f v f � ��� then
�� u ��� � f v

f �
�� u ���� and �� u �� is least if �� and �� are�

The proof di�ers only slightly from the proof of Proposition ����� �

In this sense the least BSA of a strict bottom�re�ecting function is u�distributive with

respect to smash projections
recall that glb for smash projections is pointwise��

Proposition ����

For projections on lifted domains the operator & may be expressed in terms of t and

u as follows�

�� & �� �
�l� t �l�� u
�s� u �s�� �

�

A projection transformer � is &�distributive if for all sets of projections X we have

�
�X� � �
� X�� Following we show that if a BSA is least then it is &�distributive�

This is no surprise in view of the facts that least projection transformers are t�

distributive with respect to lazy projections and t� and u�distributive with respect to

smash projections� and that & is lub for lazy projections and glb for smash projections�

Proposition ����

If � is the least BSA of a lifted function then � is &�distributive�

Proof

Suppose that �� and �� are least such that �� �f� v f� � �� and �� �f� v f� � ��� Then

we need only show that �� & �� is least such that
�� & ��� � f� v f� �
�� & ���� Now

�s� and �s� are least such that �s� � f� v f� � �s� and �s� � f� v f� � �s�� and �l� and �l� are

least such that �l� � f� v f� � �l� and �l� � f� v f� � �l�� by Proposition ����� Hence by

Corollary ���� we have that �l� t �l� is least such that
�l� t �l�� � f� v f� �
�l� t �l���

and by Proposition ���� �s� u �
s
� is least such that
�s� u �

s
�� � f� v f� �
�

s
� u �

s
��� Since

�� & �� �
�l� t �l�� u
�s� u �s�� and �� & �� �
�l� t �l�� u
�s� u �s��� the result follows

from Proposition ����� �

If a distributive projection transformer is &�distributive on the t�basis of its argument

domain� then it is &�distributive everywhere	 the key fact is that & distributes over

t� As we will show later� the &�distributive projection transformers
with or without

the guard property� do not in general form a lattice� Still� as the following shows the

fact that least BSAs are &�distributive is useful�

CHAPTER �� ANALYSING FUNCTIONS WITH PROJECTIONS ��

Proposition ���

If � has the guard property then �
� & �� v
� �� &
� ���

Proof

Let S be the set of stable functions of which � is a BSA� and let X � fj f j j f � Sg

so that � �
F
X and each element of X is &�distributive� Then

�
� & ��

� t��X �
� & ��

� t��X

� �� &
� ���

v t��X t� ��X

� �� &
� � ���

�
t��X � �� &
t��X � ��

�
� �� &
� �� �

as required� �

This is not surprising since for � and � both lazy we get equality� and for � and �

both smash projections the result follows from the monotonicity of � �

We conclude with a brief summary� A function may not have a least BSA� but least

BSAs are guaranteed to exist for stable functions� and for functions with argument

domains constructed using the primitive domain � and domain constructors ��� ��

�� �� �� and recursion� A function may not be determined by its least BSA
when

it exists�� but every strict bottom�re�ecting function is determined by its least BSA�

hence so are lifted functions� Least BSAs of stable functions map projections to

pointwise least projections� and for BSAs of stable functions abstract composition

preserves leastness�

�	 Forward Strictness Abstraction

For forward strictness abstraction� greater is better�

Proposition ����

Every function has a greatest FSA� and it is monotonic�

Proof

Let f and � be �xed� Let X be the set of projections � such that ��f v f ��� The set

X is not empty
it always contains BOT �� and it is directed
since �� � f v f � � and

�� � f v f � � implies
�� t ��� � f v f � ��� Since the safety condition is inclusive in

� we have

F
X � � f v f � �� We conclude that f has a greatest FSA� and it is clearly

monotonic� �

CHAPTER �� ANALYSING FUNCTIONS WITH PROJECTIONS ��

The greatest FSA of a function may not be continuous	 certainly the continuous

extension of a greatest FSA is safe� For practical analysis in which the projection

domains are �nite this distinction disappears�

As the following shows� given f and � we cannot in general hope to choose � large

enough to get equality instead of inequality in the safety condition� Let

f � Bool �
�� �� �

f � �
���� �

f tt �
���� �

f � �
���� �

The greatest FSA of f maps �� to BOT � BOT and
BOT � BOT �
f � � �

���� �
���� � f
�� � �� This example also shows that the greatest FSA

may map projections to functions that are not pointwise greatest� even on the image

of f � Last� it shows that the greatest FSA is not t�distributive� �tt is mapped to

�����	 t
ID � BOT �
this projection maps
���� to
���� and acts as the identity

otherwise�� �tt t �� � ID � and the greatest FSA of f maps ID to ID �

Next we state a compositional property for FSAs�

Proposition ����

If �� and �� are FSAs of f� and f� respectively� then �� � �� is a FSA of f� � f�� �

Thus forward�strictness abstract composition is taken to be ordinary composition�

Composition of FSAs does not in general preserve greatestness
this is not surprising

since the greatest FSA of a function f may not map projections to functions that are

pointwise greatest on the range of f �

We observe that ID � f v f � ID for all f � Hence the greatest FSA of any function

maps ID to ID�

Let us restrict attention to those functions f for which least BSAs exist� If �� � f v

f � �� and �� � f v f � �� then
�� u ��� � f v f � �� and
�� u ��� � f v f � ��� hence

�� u ��� � f v f �
�� u ���� Monotonicity of any FSA � of f requires �
�� u ��� v

� ��� u
� ���� so we can do no better than to take �
�� u ��� �
� ��� u
� ����

Proposition ����

Function f has a least BSA i� the greatest FSA of f is u�distributive�

Proof

If f has a least BSA� showing that the greatest FSA of f is u�distributive is a simple

generalisation of the previous discussion to sets of projections rather than pairs� In

the other direction� suppose the greatest FSA � of f is u�distributive� let � be �xed�

CHAPTER �� ANALYSING FUNCTIONS WITH PROJECTIONS ��

and let X be the set of all projections � such that � � f v f � �� Then � must map

every element of X to some projection greater than j jX � so � v j j
� X � � �
j jX ��

Evidently� j jX is the least projection such that � � f v f �
j jX �	 since least such

projections exist for each � it must be that f has a least BSA� �

Recall we have given one example of a function f � �� � � that did not have a

least BSA� By the previous proposition the greatest FSA of f is not u�distributive	

it is interesting to show this directly� The greatest FSA � of f maps every bottom�

re�ecting projection to ID and every other projection to BOT � De�ne

ODD � j�� j

ODD �� � ��

ODD
lift�i ��� �
lift�i�� ���

ODD
lift�i�� ��� �
lift�i�� ���

EVEN � j�� j

EVEN �� � ��

EVEN
lift�i ��� �
lift�i ���

EVEN
lift�i�� ��� �
lift�i�� ���

Then � ODD � � EVEN � ID � but ODDuEVEN � BOT � so � is not u�distributive�

Though � is monotonic it is not continuous� the sequence fNOK�lifti �	� j i
 �g is

increasing and � maps every element of this sequence to BOT � but the limit of this

sequence is ID which � maps to ID �

When least BSAs are known to exist we may take advantage of u�distributivity� The

set of �cd such that c is �nite and d is immediately below c
that is� such that there

does not exist d � such that d � d � � c	 this is well�de�ned since c is �nite� form a

u�basis for jU j� every element of jU j is the glb of some subset of the u�basis� and no

element of the u�basis is the glb of any set that does not contain it�
The glb of the

empty subset of a lattice is its greatest element� here ID� which is not in the u�basis��

Hence the behaviour of a u�distributive projection transformer that maps ID to ID is

determined by its behaviour on the u�basis of its argument domain� In any case the

u�distributive extension of any FSA � of f
the u�distributive projection transformer

that agrees with � on the u�basis
is a FSA of f �

The u�distributive monotonic projection transformers form a complete lattice that is

not in general a sublattice of the monotonic projection transformers� In the lattice of

u�distributive projection transformers glb is de�ned pointwise	 �� t �� is de�ned to be

the least u�distributive projection transformer greater than the pointwise lub� When

greatest FSAs are u�distributive and �� and �� are FSAs of f � their pointwise lub�

CHAPTER �� ANALYSING FUNCTIONS WITH PROJECTIONS ��

hence �� t ��� is a FSA of f � The same holds for u�distributive monotonic projection

transformers that map ID to ID� We use
F
� to construct the space of u�distributive

projection transformers that map ID to ID 	 this space is closed under composition�

We can now neatly characterise the greatest FSA � of a function f � U � V � it is

� � � j jf�vv � j v � f u� v � � f
� u�� u � U g �

For binding�time analysis� unlike strictness analysis� we do not require analysis of

lifted functions� For this reason� and because the analysis is forward� the treatment

of functions of multiple arguments is much simpler� if �i is a
greatest� FSA of fi for

� 	 i 	 n� then a
greatest� FSA of hf�� � � � � fni is ���
�� ��� ����
�n ���

����� Relating forward and backward strictness abstraction

We now brie�y relate forward and backward strictness abstraction to the theory of

reversal and relational reversal of abstract interpretations �HL��b� HL��c��

If � � is any FSA of f then any � such that � � � � w id is a BSA of f � and � is a reversal

of � �� Similarly� if � is any BSA of f then any � � such that � � � � v id is a FSA of

f � and � � is a reversal of � � When f has a least BSA � and greatest FSA � � we have

� � � � w id and � � � � v id 	 then � and � � form a Galois connection� each is a reversal

of the other� and by virtue of being a Galois connection each determines the other� �

must map BOT to BOT and � � must map ID to ID �

Since least BSAs are not guaranteed to exist we may resort to relational reversal �

we relate a set of BSAs to each FSA� The relational reversal of FSA � � is the set of

all � such that � � � � w id 	 again this set contains the same information as � � and

each determines the other� For example� referring again to f � �� � � for which no

least BSA exists� the greatest FSA maps BOT to BOT and ID to ID	 its relational

reversal contains precisely the BSAs of f �

Were we to restrict attention to strict bottom�re�ecting functions and projection

transformers from smash projections to smash projections only simple reversal would

need to be considered since least BSAs and greatest FSAs would always exist� How�

ever� many of the interesting projections� such as H � are not smash projections�

The theory of relational reversal in �HL��c� is restricted to �nite lattices� though

their treatment would appear to extend smoothly to in�nite lattices	 continuity is not

required� only monotonicity� In the �nite case the components of a Galois connection

are guaranteed to distribute over glb and lub respectively	 our corresponding result

contains the essence of the proof for in�nite domains� Since we are working in the

CHAPTER �� ANALYSING FUNCTIONS WITH PROJECTIONS ��

more general setting� we will prove some more
instances� of these results from �rst

principles�

Proposition ����

The greatest FSA of a function is determined by its BSAs�

Proof

First we observe that � � f v f � � i� there exists a continuous BSA � such that

� � � �
de�ne � � to be � if � v � and ID otherwise�� Second� if X is the set of

projections � such that � � f v f � �� then as shown in the proof of Proposition �����

the greatest forward abstraction of f maps � to
F
X � �

Proposition ���	

The set of BSAs of a function is determined by its greatest FSA�

Proof

Let � � be the greatest FSA of a function f � Then the projection transformer � is a

BSA of f i� � � � � w id � �

Hence the greatest FSA of a function contains the same information as its set of

BSAs�

Proposition ����

Every strict bottom�re�ecting function is determined by its greatest FSA�

Proof

Let f � U � V be continuous� strict� and bottom re�ecting� and let � be the greatest

FSA of f � It is not hard to see that for x � U � it must be that � NOKx � NOK�f x	�

Since NOKc determines c� it is straightforward to reconstruct f from � � �

We observe that for strict bottom�re�ecting functions and smash projections� we can

get equality in the safety condition in the backward direction but not the forward

direction	 this asymmetry is a consequence of functions being many�to�one�

Proposition ����

Every strict bottom�re�ecting function is determined by its BSAs�

Proof

That a strict bottom�re�ecting function is determined by its BSAs follows from the

fact that a function is determined by its greatest FSA� which is in turn determined

by its BSAs� �

Hence every strict bottom�re�ecting function is determined by its least BSA� if it

exists� We have proven this directly before	 the point here is that we can do so

indirectly� by proving the corresponding result for forward analysis� then appealing

to the theory of reversal of abstract interpretation�

CHAPTER �� ANALYSING FUNCTIONS WITH PROJECTIONS ��

�
 Forward Termination Abstraction

Recall the nominal goal is� given f and �� to �nd � such that � � f w f � �� We

may always take � to be ID � so every function has a FTA� but this is completely

uninformative
smaller is better� In general a function does not have a least FTA or

even minimal FTA� For example� for f � � � � with f � � �� there is no least

or minimal projection that acts as the identity on � and hence no least or minimal

FTA of f � More generally there is no least or minimal projection that acts as the

identity on any in�nite element
hence characteristic projections are de�ned only for

�nite values��

Even when least � exists such that � � f w f � �� in general � is not pointwise least�

or even pointwise least on the image of f �

When a least FTA exists it is not in general t�distributive� for example� de�ne

glb �
�� ��� � �

glb x y � x u y �

The least FTA of glb maps ID �BOT and BOT � ID to BOT � but their lub� which

is ID � to ID �

Perhaps surprisingly� least FTAs are not u�distributive either� even for �nite domains�

Consider lub �
�� ��� �� Its least FTA maps ID � BOT and BOT � ID to ID �

but their glb BOT � BOT to BOT �

Proposition ����

If �� and �� are FTAs of f� and f� respectively� then �� � �� is a FTA of f� � f�� �

Composition does not in general preserve leastness�

����� Analysis of lifted functions

Since we are interested in determining lower bounds on evaluation we will analyse

lifted functions�

Proposition ����

Every function f is determined by the FTAs of f��

Just as for forward and backward strictness abstraction� there are two ways to do

this� The easier way would be to relate forward and backward termination abstraction

and show the simple reconstruction of f� from its greatest BTA
in the backward

direction this is easy because we can get equality in the safety condition using smash

CHAPTER �� ANALYSING FUNCTIONS WITH PROJECTIONS ��

projections�
Note that though f may not have a BTA� f� always has�� The more

complex direct method requires an argument like that in Proposition ����� �

Just as for backward strictness abstraction� abstract composition for strict bottom�

re�ecting functions preserves leastness with respect to smash projections�

Proposition ��	

Every FTA of a lifted function is bottom re�ecting� �

Proposition ��	�

Every FTA of a lifted function is approximated by a strict FTA� �

We will henceforth restrict attention to strict continuous bottom�re�ecting FTAs of

lifted functions�

If a function is strict and its argument might not terminate� application of the function

to the argument might not terminate� This is embodied in the following�

Proposition ��	�

Every FTA of a lifted strict function is approximated by an FTA that maps BOT�

to BOT� and is distributive with respect to BOT�� �

For functions of multiple arguments we have the following�

Proposition ��	�

For strict bottom�re�ecting function fi with
least� FTA �i for � 	 i 	 n a
least�

FTA of hhf�� � � � � fnii is ���
�� ��� � � ��
�n ��� �

�� Backward Termination Abstraction

In general there is no � satisfying � � f w f � �� for example� when � is BOT and

f is any non�bottom constant function� Even when solutions exist there may be no

greatest solution� for example� if f is any of the usual binary operations on Int and we

require that the result not be de�ned� there are many maximal projections � satisfying

BOT � f w f � �
for example� one maps the �rst component to �� another maps

pairs
x� y� of even numbers to
x��� and all other pairs to
�� y�� Generalising�

suppose sum sums the elements of a list� and the result of sum is required to be

unde�ned� Then we have the choice of mapping any element or the terminating � � of

the list to �� In general� every projection � meeting the safety condition is bounded

above by a maximal projection meeting the safety condition since lub on projections

is pointwise and the safety condition is inclusive in �� Hence the set of maximal

elements satisfying the safety condition is complete�

CHAPTER �� ANALYSING FUNCTIONS WITH PROJECTIONS ��

It appears that to make e�ective projection�based analysis of this kind we would have

to move to a relational analysis� considering sets of projections rather than individual

projections� Let S be a set of projections on the result of some function� any one of

which removes a su�cient amount of information
to guarantee that each argument

is mapped to some value less than some value in a given set� for example� mapping

fully�de�ned lists to partially�de�ned lists�� Then the set T of projections on the

argument should have the the property that for every � � T there exists some � � S

such that � � f w f � �� that is� each element of T removes a su�cient amount of

information to guarantee that some particular part of the output is not produced�

The sets S and T may be taken to be downward�closed and are characterised by

their maximal elements� hence an appropriate domain of sets of projections is the

Hoare
lower� powerdomain of projections�

As an aside� it is interesting to note that Wadler�s ��point domain ��� for lists appears

to give a starting point for such a relational analysis� For sum to be guaranteed to not

produce its result the appropriate �abstract� projection
set of projections� is precisely

the one that maps lift� � to lift� � and acts as the identity on lift � and ��

Without certainty that security analysis is of real practical use we choose to drop

it at this point� with the assertion that the subsequent development could be made

relational without too much e�ort�

�� Discussion and Related Work

We have shown that at least some properties of functions that can be captured with

projection analysis cannot be captured in the BHA framework� but this does not

answer the more general question of what the relationship is between the properties

that can be captured in each system� A re�nement of this question is what properties

could actually be detected by a program analysis technique within each system�

Recall that abstract values in the BHA framework are Scott closed sets� Every Scott

closed subset S of domain D can be uniquely represented by a smash projection�

de�ne �S by

�S � jD� j �

�S
lift s� � �� if s � S �

�S x � x � otherwise �

An abstraction f � of function f can safely map S to T i� �T � f� v f� � �S� Thus

every property that can be captured in the BHA framework can be captured using

projection analysis
this is also the essence of Burn�s argument �Bur��c���

CHAPTER �� ANALYSING FUNCTIONS WITH PROJECTIONS ��

A problem arises for higher�order projection�based program analysis� though in prin�

ciple there are representations of abstract functions as projections there does not seem

to be any way to give a compositional non�standard semantics that gives a reasonable

analysis
this is considered further in Section ���� Another observation is that if pro�

jections � and � are regarded as total relations
or equivalence relations� then � � ��

where � is the operation on relations� is not in general a total
or equivalence� rela�

tion� Burn and Hunt �BH��� argue that this is the reason that projections cannot be

used to capture properties of higher�order functions in a natural way� Hunt �Hun��b��

and Hunt and Sands �HS���� solve this problem by using partial equivalence relations

PERs� as non�standard values	 we will consider their analysis techniques later�

We have observed an interesting parallel between BHA abstraction and backward�

strictness abstraction� in the former properties are Scott�closed sets	 in the latter�

the projection transformers with the guard property are in one�to�one correspon�

dence with Scott�closed sets of stable functions� In a sense� the only di�erence is the

ordering	 since the stable ordering is stronger than the standard ordering it is not

surprising that stronger properties can be characterised� e�g� head strictness�

One other notable attempt to generalise BHA strictness analysis is Dybjer�s inverse

image analysis �Dyb���� Brie�y� his analysis seeks to determine the set of function

inputs that could produce a given set of outputs	 it is a backward analysis� The

non�standard values are not just any sets but Scott open
upward closed� sets� It

does not appear possible to capture head strictness
for example� in this framework

because the head�strict lists
lists that do not contain bottom elements� do not form a

Scott open set� He also suggests that the technique could be readily modi�ed to give

a termination analysis	 presumably it would be unable to capture such properties as

head termination for the same reason�

Burn �Bur��� has attempted to give some perspective by considering just what prop�

erties various analysis techniques can manipulate� This kind of work is still at an

early stage	 much remains to be done�

Chapter �

Source Language and Standard

Semantics

The source language is a simple� strongly typed� monomorphic� functional language

with non�strict semantics� It di�ers from previously mentioned real�world lazy func�

tional languages in only one essential way� it is monomorphic rather than
Hindley�

Milner� polymorphic�

The restriction to monomorphic typing is essential because the analysis techniques

we develop require exact type information� This is in keeping with a common pat�

tern of development of program analysis techniques� techniques are invented �rst for

monomorphic �rst�order languages� then generalised
usually independently and in�

compatibly� to polymorphism and higher order� and �nally to languages that are both

polymorphic and higher order	 we view our techniques as steps along this path� As for

implementation� it is possible to translate a polymorphic program to a monomorphic

one by generating instances of functions at every required monomorphic type
the

number of required instances is �nite and can be statically determined for Hindley�

Milner polymorphism �Hol����� and hence we can regard our analysis as being appli�

cable� if indirectly� to a polymorphic version of our language� What�s more� for the

analysis techniques seemingly most closely related to ours the monomorphic versions

give more information than their polymorphic counterparts� for strictness analysis

Burn� Hankin� and Abramsky�s higher�order monomorphic forward analysis tech�

nique �BHA��� is stronger than Abramsky�s �Abr��� or Baraki�s �Bar��� polymorphic

techniques� and Wadler and Hughes� �rst�order monomorphic backward technique

�WH��� is stronger than Hughes and Launchbury�s polymorphic technique �HL��a�	

for binding�time analysis Launchbury�s monomorphic technique is stronger than the

polymorphic one �Lau��a��

Monomorphism aside� the di�erences between our toy language and real programming

��

CHAPTER �� SOURCE LANGUAGE AND STANDARD SEMANTICS ��

languages amount to a lack of syntactic sugaring and a paucity of prede�ned types

and functions� We address these issues in turn�

Semantically� lack of syntactic sugar is a non�issue� Our language could be regarded

as simpli�cation of Haskell�s Core language �HPW���� or the Core languages of Pey�

ton Jones �PJ��� or Peyton Jones and Lester �PJL���� in which such syntactic features

such as Haskell�s type classes	 nested� guarded� sequential� overlapping� tagged� de�

fault� and irrefutable pattern matching	 if�expressions	 and list comprehensions of

various kinds have been transformed out� In a monomorphic language let and where

can be transformed into application without changing the semantics� as can letrec

and whererec using an explicit least �xed point construction� The strict constructors

of Lazy ML can be simulated in our language�

Finally� our language provides only a single prede�ned type Int to model the integers�

with a single operation� addition� From a theoretical point of view even the provision

of integers is unnecessary� since any computable function can be expressed in the

language without providing them as primitive� More practically� we acknowledge that

without it our type system would not likely allow an e�cient implementation of the

integers and associated operations� and our language would poorly re�ect real�world

practice� We claim that integer addition is representative in its strictness properties

of arithmetic operators in general� and of the comparison operators as well� Similarly�

we claim that the analysis for �oating point numbers and their operators is essentially

the same as for integers� Commonly prede�ned types like booleans� characters� and

lists are expressible in a reasonable way in our type language and so are not provided

as primitive� At a more fundamental level� the analysis techniques developed require

only that prede�ned functions be continuous� for example� there would be no di�culty

in adding a parallel construct such as parallel conditional�

The provision of unboxed types in Haskell is a genuine feature because it introduces

so�called unpointed domains
roughly� domains without a bottom element� We be�

lieve that it would be a straightforward matter to extend our development to handle

unboxed types	 this is discussed further in Section �������

�For uniformity of development we will have some unboxed types�those that do not give rise to
unpointed domains� Peyton Jones and Launchbury�s treatment provides unboxed primitive� sum�
and product types
 ours unboxed product and function types�

CHAPTER �� SOURCE LANGUAGE AND STANDARD SEMANTICS ��

��� Source Languages

We start with the language of types� The syntactic classes are

T � Type �Types�

A � TName �Type Names�

c � Con �Constructors�

D � TDefns �Type De�nitions�

The grammar for types is

T ��� A �Type Name�

j Int �Integer�

j �T�� � � � �Tn� �Unboxed product�

j c� T� � � � � � cn Tn �Sum�

j T� �� T� �Unboxed function�

The product type may be nullary� unary� or multiary� Nullary product �� plays

a special role and will be called the unit type� A unary product �T� will in all

interpretations have the same meaning as T and is taken to be the same type� so

parentheses may be used in the usual way without confusing abstract and concrete

syntax� Integer and sum types will be called boxed types� and product and function

types unboxed�

The grammar for type de�nitions is

D ��� A� � T�	 � � � 	 An � Tn �Type De�nitions�

A set of type de�nitions must be closed� any A appearing in the de�nitions must be

de�ned
appear to the left of �� exactly once	 furthermore� each c may appear no

more than once�

����� The lazy lambda calculus

The standard expression semantics is intended to model some operational semantics in

which reduction is normal order to weak head normal form
WHNF� �PJ��� Ong���

Abr���� which may or may not terminate� For an expression of boxed type the

semantics is intended to give value � if it does not reduce to WHNF� and some value

di�erent from � otherwise� This departs in an important way from the more usual

model of the lambda calculus �Bar��� in that reduction is to WHNF rather than

head normal form
HNF�� In particular� every lambda expression is in WHNF even

though it may not have a HNF� so our semantics should give a non�bottom value

CHAPTER �� SOURCE LANGUAGE AND STANDARD SEMANTICS ��

to a lambda expression even if it denotes the least
constant bottom� function� A

theory of normal�order reduction to WHNF in the strongly�typed lambda calculus has

been developed by Abramsky and Ong �Ong��� Abr���	 this system is called the lazy

lambda calculus� For our purposes� the signi�cant feature of the lazy lambda calculus

is that expressions of function type take values from a lifted function space of the

form
U � V ��� Then expressions of function type that do not have a WHNF should

be assigned value � by the semantics	 any expression of function type that does have

a WHNF should be assigned value value lift f for some f � Though an expression of

function type has a di�erent value depending on whether it does or does not have a

WHNF� when such an expression is applied� the expression with no WHNF
value

�� should behave just as an expression that does have a WHNF but still maps every

argument to bottom
value lift ��� Thus application of a lazy function
a value from

a lifted function space
involves dropping the function
in e�ect� projecting back

into the conventional function domain�� and applying the result to the argument� A

simplifying observation is that lazy functions are just ordinary functions embedded

in the simplest of lazy data structures� unary sum� for which the embedding is lifting�

The use of lifted function spaces has implications for the interpretation of the results of

analysis� For example� the function denoted by
x�
y�x will not be strict� argument

� is mapped not to � but to lift �	 this will be discussed in context�

The semantics of lazy functional languages usually map product types to lifted prod�

uct domains
a notable exception is Miranda�	 in the Core language of Haskell� or

Core of �PJL���� this is made explicit since product types can only be expressed as a

unary sum of the form c T� � � � Tn� We will distinguish lifted products from unlifted

products	 more precisely� we will treat sums and products independently� In our lan�

guage the type would be expressed c �T�� � � � �Tn�� In contrast� function types are

usually mapped to
unlifted� function domains� The reason is that without a pro�

gramming language construct such as seq e� e�� which evaluates e� to WHNF before

returning e�� it is not possible to detect that functions can be evaluated indepen�

dently of being applied� At some point� however� the lifting of function spaces must

be recognised� if a function�s argument is to be evaluated early and that argument is

of function type we must recognise that it can be evaluated� Our standard semantics

of types will map T� �� T� to an unlifted function space	 we will take T� �� T� to be

shorthand for lam �T� �� T��� a unary sum of unboxed function type�� A grammar

�Actually lam is a family of constructors indexed by T� and T�
 this is left implicit�

CHAPTER �� SOURCE LANGUAGE AND STANDARD SEMANTICS ��

SimpleSum � single Int

Bool � true �� � false ��

IntList � nil �� � cons �Int� IntList�

IntListList � lnil �� � lcons �IntList� IntListList�

FunList � fnil �� � fcons �Int �� Int� FunList�

FunChoice � left �Int �� Int� � right �Int �� Int�

BoolTree � leaf Bool � node �BoolTree� BoolTree�

FunTree � fleaf �Int �� Int� � fnode �FunTree� FunTree�

FunType � FunType �� Int �� Int

Figure ���� Example type de�nitions�

for a more conventional language is

T ��� A �Type Name�

j �T� �Parenthesised Type�

j Int �Integer�

j T� �� T� �Function�

j S �Sum of Products�

S ��� c� �T���� � � � � T��a�� � � � � � cn �Tn��� � � � � T��an� �Sum of Products�

D ��� A� � S�	 � � � 	 An � Sn �Type De�nitions�

This is just a restriction of the �rst language to boxed types	 our theory is developed

in terms of the �rst language and hence applies to any subset� Figure ����� de�nes

some of the types that will be used in later examples�

����� Expression language

This time we give a more conventional language �rst� then its embedding into the

actual source language� The additional syntactic classes required for expressions are

e � Expr �Expressions�

x � Var �Variables�

n � Num �Numerals�

CHAPTER �� SOURCE LANGUAGE AND STANDARD SEMANTICS ��

The grammar for expressions is

e ��� x �Variable�

j ni �Numeral�

j e� � e� �Integer addition�

j c �e�� � � � �en� �Sum construction�

j case e� of �Sum decomposition�

c� �x���� � � � �x��a�� �� e�
���

cn �xn��� � � � �xn�an� �� en

j
x
T�e �Lambda abstraction�

j e� e� �Function application�

j seq e� e� �Sequential evaluation�

j fix e �Fixed point�

To keep the semantics simple we require that in a case expression every constructor

in the corresponding type de�nition appear in exactly one pattern� Usually we will

write
x�e instead of
x
T�e when the type is clear from context�

A complete program consists of a sequence of type declarations followed by an ex�

pression�

p � Prog �Programs�

p ��� D	 e

We do not require that e be closed	 for example e might have free variables such as

input� a standard or default input list of characters
as in Lazy ML or Miranda��

Free variables are assumed to be bound by a global environment� This concept is

important to our development� it allows every expression to be treated in the same

way
closed expressions are not special�

CHAPTER �� SOURCE LANGUAGE AND STANDARD SEMANTICS ��

We regard expressions in the conventional expression language as shorthand for ex�

pressions in the actual source language de�ned by the following grammar�

e ��� x �Variable�

j ni �Numeral�

j e� � e� �Integer addition�

j �e�� � � � �en� �Tuple construction�

j let �x�� � � � �xn� � e� in e� �Tuple decomposition�

j ci e �Sum construction�

j case e� of c� x� �� e�	 � � � 	 cn xn �� en �Sum decomposition�

j
�x
T�e �Lambda abstraction�

j app� e� e� �Function application�

j fix� e �Fixed point�

Like product types� tuples may be nullary� unary� or multiary� Since e will have the

same type and denotation as �e� parentheses may be used in the usual way� As before�

in a case expression every constructor of the selector type must guard a branch� and

�x�e may be written instead of
�x
T�e�

Translation of the conventional language into the source language will make explicit

at the syntactic level the boxing and unboxing
the embedding into and projection

out of lifted spaces
of tuples and functions� In turn� this gives a simpler� more

uniform� and more general development of the semantics�

The conventional case expression

case e� of

c �x���� � � � �x��a�� �� e�
���

c �x���� � � � �x��a�� �� en

is shorthand for

case e� of

c x� �� let �x���� � � � �x��a�� � x� in e�
���

c xn �� let �xn��� � � � �x��an� � xn in en �

Application e� e� is translated to

case e� of

lam f �� app� f e� �

CHAPTER �� SOURCE LANGUAGE AND STANDARD SEMANTICS ��

where T� �� T� is understood to be lam �T� �� T��� Sequential evaluation seq e� e�

is translated to

case e� of c� x� �� e�	 � � � 	 cn xn �� e� �

where e� has type c� T� � � � � � cn Tn� Lambda abstraction
x
T�e is translated

to lam �
�x
T�e�� Last� �xed point fix e is translated to

case e of

lam f �� fix� f �

In all cases we take the variables introduced by translation to be fresh so that there

is no name capture�

Roughly speaking� evaluation is forced only by case and � 	 in particular� product

decomposition does not force evaluation�

����� Typing

We will typically use T� U� and V to denote types� The symbol � denotes a set of

typing assumptions of the form xi � Ti� The typing rules are given following�

� � x
T � x
T

� � ni � Int

� � e� � Int � � e� � Int

� � �e� � e�� � Int

� � x � T� � e � T�

� � �
�x
T��e� � T� �� T�

� � e� � T� �� T� � � e� � T�

� � �app� e� e�� � T�

� � e� � T� � � � � � en � Tn

� � �e�� � � � �en� � �T�� � � � �Tn�

� � e� � �T�� � � � �Tn� � � x� � T�� � � � � xn � Tn � e� � U

� � �let �x�� � � � �xn� � e� in e��
U

� � e � Ti

� � �ci e� � A
�A � c� T� � � � � � cn Tn�

CHAPTER �� SOURCE LANGUAGE AND STANDARD SEMANTICS ��

� � e� � A � � x� � T� � ei � U � � � � � xn � Tn � en � U

� � �case e� of c� x� �� e�	 � � � 	 cn xn �� en�
U

�A � c� T� � � � � � cn Tn�

� � e � T �� T

� � �fix� e�
T

��	 Semantics

We will give a number of type and expression semantics pairs T and E � typically

superscripted by the name of the semantics� For example� S is the name of the

standard semantics and the two semantic functions are T S and ES�

����� Domain de�nitions

Each semantic function T maps types to domain environments to domains� so

T � Type � DEnv � Dom �

DEnv � TName � Dom �

where Dom is the class of all Scott domains	 we may take it to be the category of

Scott domains� though we will not use any of the categoric structure� We use � to

denote a typical domain environment� when necessary superscripted with the name

of the semantics�

For each such function there is an implicitly de�ned function Tdefns mapping type

de�nitions to domain environments� that is�

Tdefns � TDefns � DEnv �

The function Tdefns is de�ned in terms of T � given type de�nitions D equal to

A� � T�	 � � � 	 An � Tn� de�ne

�i �
����Aj �� T �� Tj �� � j � 	 j 	 n��i �� �

where

�� � �Aj �� T �� �� �� � � j � 	 j 	 n� �

Then �i�� A �� is the ith canonical approximating domain for Tdefns �� D ���� A ���
If we re�

gard � as a tuple indexed by type name then Tdefns �� D �� is a solution of � � �Ai ��

T �� Ti �� � j � 	 i 	 n� as described in Section ����� Note that the initial approximating

CHAPTER �� SOURCE LANGUAGE AND STANDARD SEMANTICS ��

domains
���� A �� for each A
are the interpretation of the unit type� The substitution

lemma will hold for all such de�nitions� that is� T �� T �� ��A �� T �� T� �� �� will be equal

to T �� T�T��A� �� � when there is no variable capture� A useful consequence of these

two facts is that �i�� A �� can always be expressed by T �� T �� � � for some
closed� type T�

Even non�recursive type de�nitions give rise to retraction sequences	 for example in

the standard semantics the type de�nition I � Int yields the retraction sequence

f�� Int � Int � Int � � � �g� f
�x ��� �x ����
id � id��
id � id��
id � id�� � � �g��

the inverse limit of which is isomorphic to Int � but plainly not identical� Nonetheless�

we normally think of the type de�nition as de�ning I to be a synonym for Int�

and therefore think of the inverse limit of the retraction sequence as being simply

Int � On the other hand� every type� whether recursive or not� may be thought of as

denoting the inverse limit of some retraction sequence� simply by giving the type a

name and generating the appropriate type de�nition� This point of view makes clear

that non�recursive types are simply special cases of recursive types� The former view

is useful when giving semantic de�nitions� it would be confusing to write � sometimes

and
�� �� �� � � �� others� and explicitly de�ne and apply the appropriate isomorphism

maps� The latter view is preferable when proving properties of functions de�ned in

terms of type structure� since we need only consider the more general case�

Often we will take the type de�nitions D and the corresponding domain environment

Tdefns �� D �� to be implicitly �xed� in which case T �� T �� is shorthand for T �� T ��
Tdefns �� D ����

The sole reference to the domain environment is always of the form T �� A �� � � ��� A ���

Hence we may economise on syntax by excluding this clause from the de�nitions of T �

and excluding explicit passing of the domain environment parameter� For example�

in the standard semantics

T S�� T� �� T� �� � �
T S�� T� �� �� �
T S�� T� �� �� �

which we abbreviate

T S�� T� �� T� �� � T S�� T� �� � T S�� T� �� �

����� Expression semantics

For the purpose of generating programs we �rst �x a set D of type de�nitions� We

then suppose a supply of typed variables xi � Var � i
 �� an in�nite number at each

type� Since any given expression e contains only �nitely many variables xi� � 	 i 	 n�

value environments � for e and all of its subexpressions need contain bindings only

for some �nite subset of these variables� It turns out to be very convenient to have

CHAPTER �� SOURCE LANGUAGE AND STANDARD SEMANTICS ��

value environments come from domains corresponding to product types� for bindings

of variables xi � Ei� � 	 i 	 n the corresponding type is �E�� � � � �En�� usually abbre�

viated E
the type of the environment� Then for � � T �� �E�� � � � �En� �� environment

lookup ��� xi �� is de�ned to be seli �� where seli is the appropriate selector function for

products� de�ned for each type semantics� This view allows the functionality of the

evaluation function E to be made precise� E is a family of functions� indexed by the

type de�nitions D� the type E of its value environment argument� and the type T of

the particular expression e to be evaluated� Then

ED�E�T�� e �� � T �� E ��
Tdefns �� D ��� � T �� T ��
Tdefns �� D ��� �

Usually the subscripts of E will be omitted� Value environments may be superscripted

the same as domain environments and the semantic functions�

By eschewing the use of a universal domain� we avoid the question of whether �typed

programs can�t go wrong �Mil���	 instead the relevant question is whether each

expression semantics E is well de�ned for well�typed arguments� which we assert to

be the case�

����� A generic expression semantics

Since several di�erent expression semantics will be given� it is convenient to express

all of the semantics as a single schema� or generic semantics� that is parameterised

by a set of constants de�ned for each particular semantics� These constants will be

superscripted with the name of the semantics� The generic semantics is de�ned as

follows�

E �� xi �� � � ��� xi �� � seli � �

E �� �� �� � � mkunit � �

E �� ni �� � � mkinti � �

E �� e� � e� �� � � plus
E �� e� �� �� E �� e� �� �� �

E �� �e�� � � � �en� �� � � tuple
E �� e� �� �� � � � � E �� en �� �� �i
 �� �

E �� let �x�� � � � �xn� � e� in e� �� �

� E �� e� �� ��xi �� seli
E �� e� �� �� j � 	 i 	 n� �

E �� ci e �� � � inci
E �� e �� �� �

CHAPTER �� SOURCE LANGUAGE AND STANDARD SEMANTICS ��

E �� case e� of c� x� �� e�	 � � � 	 cn xn �� en �� �

� choose
E �� e� �� ��

E �� e� �� ��x� �� outc�
E �� e� �� ����
���

E �� en �� ��xn �� outcn
E �� e� �� ���� �

E ��
�x�e �� � � mkfun
�x �E �� e �� ��x �� x �� �� �

E �� app� e� e� �� � � apply
E �� e� �� ��
E �� e� �� �� �

E �� fix� e �� � �
�x � apply�
E �� e �� �� �

Recall that ��� xi �� is short for seli �	 environment update and extension is de�ned by

��xi �� v � � tuple
sel� �� � � � � seli�� �� v � seli�� �� � � � � seln �� �

Then the empty environment� denoted � �� is the value of nullary tuple� which must

be the identity
up to isomorphism� of non�nullary tuple�

Now the boxing and unboxing of functions is explicit� for example�

E ��
x�e �� � �
inlam �mkfun�
�x �E �� e �� ��x �� x �� ��

and

E �� e� e� �� � � choose
E �� e� �� ��
apply � outlam�
E �� e� �� ��
E �� e� �� ��� �

For each expression semantics we need only de�ne the constants mkunit� mkinti � plus�

seli � tuple� inci � outci � choose� mkfun� apply� and �x� which we refer to as the de�ning

constants for the expression semantics� Their generic functionality is as follows�

mkunit � T �� E �� � T �� �� �� �

mkinti � T �� E �� � T �� Int �� �

plus �
T �� Int �� � T �� Int ��� � T �� Int �� �

tuple �
T �� T� �� � � � � � T �� Tn ��� � T �� �T�� � � � �Tn� �� �

seli � T �� �T�� � � � �Tn� �� � T �� Ti �� �

inci � T �� Ti �� � T �� c� T� � � � � � cn Tn �� �

outci � T �� c� T� � � � � � cn Tn �� � T �� Ti �� �

choose �
T �� c� T� � � � � � cn Tn �� � T �� T �� � � � � � T �� T ��� � T �� T �� �

CHAPTER �� SOURCE LANGUAGE AND STANDARD SEMANTICS ��

mkfun �

T �� T� �� � T �� T� ��� � T �� E ��� � T �� T� �� T� �� �

apply � T �� T� �� T� �� � T �� T� �� � T �� T� �� �

�x �
T �� T �� � T �� T ��� � T �� T �� �

Just like the evaluation function� each of these functions
except plus� is really a

family of functions� indexed by a set of type de�nitions and one or more types� tuple

additionally by its arity	 this is only made explicit when necessary� The reason for

making mkunit � mkinti � and mkfun functions of the environment is to be able to

guarantee a dependence of E on the environment at every expression
note that all of

the leaves of an expression are of the form x� ��� or ni	 the reason for the environment

argument to mkfun will be explained shortly�� In the standard semantics there is no

special dependence on the environment and these constants ignore the environment

argument� but this will not generally be the case�

Except for the fact that no case expression for selector of type Int is provided� and

a single instance which is clearly noted� the treatment of Int in our development will

be entirely consistent with Int being de�ned by the in�nite sum

Int � � � � � n�� �� � n� �� � n� �� � � � � �

Hence ni can be regarded as shorthand for ni ��� and mkinti equal to inni �mkunit �

where inni is the corresponding injection function� Further� were Int de�ned as a

sum� e� � e� could be expressed
at least in principle� as an in�nite nested case

expression� hence plus could be de�ned in terms of choose�

Factoring the semantics in this way has several bene�ts� proofs of certain relations

between the various semantics may be factored in the same way so that the details of

the proofs at the level of the generic part need be given only once	 the presentation of

each version of the semantics is made concise	 special dependence on the environment

for mkunit � mkinti � and mkfun� is made clear	 and the relationship between the

semantics of boxing and unboxing� application� and �xed point is disentangled�

����� Relating expression semantics

To relate two semantics EGD�E�T and E
H
D�E�T
where G and H are arbitrary� we will de�ne

a family of predicates

RGHD�T �
T G�� T ��
T Gdefns �� D ��� � T H�� T ��
T Hdefns �� D ����
i
� Truth

CHAPTER �� SOURCE LANGUAGE AND STANDARD SEMANTICS ��

indexed by a set of type de�nitions D and a type T� These predicates will be called

type predicates� We will require that the two semantics be logically related� as follows�

Recall that for e
T with environment type E�

EGD�E�T�� e �� � T G�� E ��
T Gdefns �� D ��� � T G�� T ��
T Gdefns �� D ��� �

EHD�E�T�� e �� � T H�� E ��
T Hdefns �� D ��� � T H�� T ��
T Hdefns �� D ��� �

Then we will require that

RGHD�E � RGHD�T �
E
G
D�E�T�� e ��� E

H
D�E�T�� e ��� �

where � is the operator on binary predicates de�ned in Section ������ Next we show

that if the de�ning constants are similarly related then the semantics are so related�

Just as for the expression semantics the relations between the constants are de�ned

in terms of their functionality as given above� and the underlying type predicates�

For example�

plus �
T �� Int �� � T �� Int ��� � T �� Int �� �

and the required relation between plusG and plusH is

RGHD�Int � RGHD�Int� � RGHD�Int �

For a more complicated example� consider

mkfun �

T �� T� �� � T �� T� ��� � T �� E ��� � T �� T� �� T� �� �

The required predicate between mkfunG and mkfunH is

RGHD�T� � RGHD�T�� � RGHD�E � � RGHD�T���T� �

When we state that some pair of semantics EG and EH or their de�ning constants are

�related by RGH or �correctly related we mean speci�cally by these predicates�

Proposition ���

If the de�ning constants of a pair of expression semantics EG and EH are related by

RGH� then so are the semantics�

Sketch Proof

The proof is by simple structural induction on expressions� We give some details of

two cases�

Case ni � Int� By assumption� mkinti
G and mkinti

H are related by RGHD�E � RGHD�Int�

and E �� ni �� � mkinti � so EG�� ni �� is related to EH�� ni �� by the same predicate�

CHAPTER �� SOURCE LANGUAGE AND STANDARD SEMANTICS ��

Case
�x�e � T� �� T�� The interesting point about this case is the requirement

that if RGHD�E
�G� �H� and RGHD�Ei
v
G� vH� then RGHD�E�
�

G�xi �� vG�� �H�xi �� vH��� where

E� is type of the
possibly� extended environment� This follows from the de�nition

of environment update and the fact that corresponding seli and tuple functions are

correctly related� �

De�ning expression semantics in terms of a set of constants and relating a pair of

semantics by relating their de�ning constants is a standard technique	 Abramsky

gives a simpler example in the setting of BHA�style strictness analysis �Abr���� while

Nielson gives a much more sophisticated framework
a two�level semantics
for doing

this �Nie����

��
 Standard Semantics

����� Type semantics

As mentioned� the versions of the various functions de�ning the standard semantics

are indicated by superscript S� The semantics of types is

T S�� Int �� � Int �

T S�� �T�� � � � �Tn� �� � T S�� T� �� � � � � � T S�� Tn �� �

T S�� c� T� � � � � � cn Tn �� �
T S�� T� ���� � � � � �
T S�� Tn ���� �

T S�� T� �� T� �� � T S�� T� �� � T S�� T� �� �

Then T S�� �� �� � � and T S�� T� �� T� �� �
T S�� T� ��� T S�� T� ����� The standard se�

mantics of sum types is a coalesced sum of lifted domains rather than the more usual

separated sum
"� to make clear exactly where lifting occurs
separated sum is a

generalisation of lifting
unary separated sum is isomorphic to lifting� and thus tends

to disguise lifting	 coalesced sum does no lifting
unary coalesced sum is identity up

to isomorphism�� and separated sum can be de�ned in terms of coalesced sum and

lifting�

����� Expression semantics

The constants for the standard expression semantics are de�ned as follows�

In the standard semantics mkunit ignores the environment argument�

mkunitS � �
� �

CHAPTER �� SOURCE LANGUAGE AND STANDARD SEMANTICS ��

Recalling that Int � Z��

mkintSi � � lift i �

Addition for Int is strict in both arguments�

plusS
�� y� � � �

plusS
x ��� � � �

plusS
lift x � lift y� � lift
x " y� �

Values of product type are ordinary tuples�

tupleS
x�� � � � � xn� �
x�� � � � � xn� �

selSi � 	i �

Constructors lift their arguments and then inject into the appropriate sum�

incSi � ini � lift �

outcSi � drop � outi �

Recalling that
i� v� � U�� � � ��Un is the image of non�bottom v under ini � we have

chooseS
�� x�� � � � � xn� � � �

chooseS

i � v�� x�� � � � � xn� � xi �

In the standard semantics mkfun ignores the environment argument�

mkfunS
f � �� � f �

Application is ordinary application�

applyS f � f �

The �xed�point constant is ordinary least �xed point� which we will denote by lfp

rather than the more usual �x to avoid confusion with the semantics�de�ning con�

stants�

�xS � lfp �

����� Operational semantics

The standard
denotational� semantics is intended to correspond to an operational

semantics modelling normal�order reduction� Ideally� we would de�ne an operational

semantics� give a congruence between the denotational and operational semantics

e�g� in the style of Lester �Les����� and for the strictness and termination analyses

show that the modi�cations of evaluation order they enable preserve observational

equivalence of programs� Such a treatment is beyond the scope of this thesis� Instead

CHAPTER �� SOURCE LANGUAGE AND STANDARD SEMANTICS ��

we give as a source of intuition and guide to the development a very informal account

of the intended operational semantics and its relation to the standard semantics�

We acknowledge that our denotational semantics does not distinguish non�strict eval�

uation from lazy evaluation
non�strict evaluation with sharing�� but� as Burn shows

�Bur��a�� the di�erence is important when modifying evaluation order based on strict�

ness information�
Burn�s observation is that if a function is head�strict and its

argument is shared� then it may not be safe to modify the evaluation order of the

argument in the seemingly natural way� that is� to evaluate the head of each evaluated

cons cell� since another function might not consume the list in a head�strict manner��

Launchbury�s natural semantics for lazy evaluation �Lau��� would probably be an

appropriate operational semantics� precisely because it accurately models sharing�

As stated� the intended model of evaluation is normal�order reduction until weak

head normal form is reached� but this does not completely describe our world view�

In most real implementations� programs
top�level expressions� are not evaluated just

to WHNF� but as far as possible outside of lambda expressions
expressions of the

form
�x�e�� with the
partial� result displayed as it is produced� For example� if the

result of a program is a string of characters� the output driver attempts to evaluate and

display the entire string� In the special case of character strings� this is evaluation

to WHNF� and if the result is non�nil� evaluation and display of the head� then

repeating the process with the tail until
if ever� the end of the list is reached� More

generally� the output driver performs a depth��rst traversal and display of the result

of the program� This may be implicit� as in Miranda� or require explicit conversion

to character�string form �rst by a family of �show� functions show�A for each type

name A as in Lazy ML� This is an important consideration because the demand of

the output driver can be accurately encoded by a projection� and we anticipate that

this would be a starting point for backward strictness analysis�

A closely related implementation decision for which there seems to be no consensus is

whether values of function type should be at all displayable� One solution is for the

implementation to write some special symbol� for example �function� in Miranda for

values of function type� The Lazy ML solution is to disallow show�A for A containing

��� We will hypothesise an output driver like that of Miranda that operates on any

type	 in particular treating expressions of function type correctly as a unary sum�

printing the name lam of the constructor upon successful evaluation to WHNF� Pro�

viding seq in the language makes it possible to de�ne in the language a function with

the same demand on its argument as this output driver� and hence derive projections

encoding the demand of the output driver at any type in a systematic way�

CHAPTER �� SOURCE LANGUAGE AND STANDARD SEMANTICS ��

Intuitively this serves to explain why mkfun� like mkunit and mkinti � requires an

environment argument� expressions of the form
�x�e cannot be evaluated and so

are like the leaf ��
this will become evident when we consider higher�order analysis�

����� Interpretation of projections

For domains arising from the standard semantics of types we are only interested in the

interpretation of projections for binding�time analysis	 for strictness and termination

analysis we work with lifted domains
in the sense of Chapter �� and projections on

them as developed in the next section�

Roughly� we intend that a projection act as the identity on those parts of a value that

are static� and map the dynamic parts to �� Hence� ID means �entirely static�� BOT

means �entirely dynamic�� and BOT�ID means that the �rst components of pairs are

dynamic and the second components static� The last example suggests a general goal�

the interpretation of projections
insofar as possible� should be de�ned recursively in

terms of type structure� that is� be compositional� We consider projections on a

type�by�type basis� regarding Int as a sum�

Case ��� Since T S�� �� �� � �� there is only one projection for this type� here ID �

BOT � telling nothing	 since values of type �� cannot be evaluated it is not useful to

regard them as either static or dynamic�

Case c� T� � � � � � cn Tn� Recall

T S�� c� T� � � � � � cn Tn �� �
T S�� T� ���� � � � � �
T S�� Tn ���� �

Every projection on this domain may be uniquely expressed in the form ��� � � �� �n

where �i � j
T S�� Ti ���� j� � 	 i 	 n� For each constructor ci de�ne the projection

transformer ci by

ci � j T S�� Ti �� j � j T S�� c� T� � � � � � cn Tn �� j

ci � � BOT� � � � �� BOT� � �� � BOT� � � � �� BOT� �

where �� appears in the ith position on the right�hand side� The interpretation of

ci � is �if the argument is of the form incSi v then the constructor is static and its

argument has staticness described by ���

CHAPTER �� SOURCE LANGUAGE AND STANDARD SEMANTICS ��

Case �T�� � � � �Tn�� Recall

T S�� �T�� � � � �Tn� �� � T S�� T� �� � � � � � T S�� Tn �� �

As discussed in Section ������ not all projections on a product space can be expressed

as a product of projections� nor as a lub or glb of products� The projections that

can be expressed as products form a complete lattice� and such projections are inter�

preted componentwise on their arguments� Projections that cannot be expressed as

products are precisely those for which the mappings of components of the argument

to corresponding components of the result are not independent� For example� the

projection on � � � that maps
���� to
���� and acts as the identity otherwise

speci�es that second components are static� but �rst components are static only if

the second component is ��

Case T� �� T�� The precise interpretation of projections on domains corresponding

to function types is considered later� but for the moment we take as given that it is

not useful to assign a degree of staticness to an unboxed function� but that values of

type T� �� T� can be static or dynamic by virtue of being of unary sum type�

��� Lifted Semantics

Given expression e the nominal goal is to determine properties of ES�� e ��� a function

from value environments to values� This is potentially more informative than the more

usual approach of determining properties of functions denoted by expressions in a

particular environment� more information is available from ES�� e �� than from ES�� e �� �

for any given �� Though this shift in perspective is essential to our development�

the results may be used to obtain the corresponding information in the more usual

perspective� as will be shown�

We have shown that no BSA of a function f can determine even simple strictness in

f � but that there is always a BSA of f� that determines every property of f � For

termination analysis it is also f� rather than f that we wish to analyse� For these

analyses it makes sense to �nd abstractions of
ES�� e ���� rather than ES�� e ��� We

desire a compositional semantics like
ES�� � ���� that could subsequently be abstracted

in some way to yield a compositional semantics that yields BSAs or FTAs� To get such

a semantics would require lifting not just the domains corresponding to the types of

the environment and the expression� but also lifting all of the domains corresponding

to the types of all of its subexpressions� As observed in �WH���� the desired result
at

�rst order� anyway� may be obtained by �lifting every domain�� This generalises easily

CHAPTER �� SOURCE LANGUAGE AND STANDARD SEMANTICS ��

to higher order� such that the result is a compositional� higher�order� lifted semantics�

We de�ne a type semantics T S� and an expression semantics ES� such that T S��� T ��

is isomorphic to
T S�� T ���� for all T� and for all e
T with environment type E we have

ES��� e �� � T S��� E ��
sb
� T S��� T �� �

and ES��� e �� is
ES�� e ���� under the implied isomorphism between
T S�� E ��� T S�� T ����

and T S��� E ��
sb
� T S��� T ���
Recall that

sb
�� as de�ned in Section ������ constructs the

space of continuous� strict� bottom�re�ecting functions��

����� Type semantics

For all domains U the domains U
sb
� � and �

sb
� U are isomorphic to �� Just as for

�� to guarantee that domain equations involving
sb
� are well�de�ned it is su�cient to

guarantee that the argument domains are not isomorphic to �	 this will hold for all

de�nitions in which
sb
� is used�

The semantics of types is

T S��� Int �� � Int� �

T S��� �T�� � � � �Tn� �� � T S��� T� �� � � � � � T S��� Tn �� �

T S��� c� T� � � � � � cn Tn �� �
T S��� T� �� � � � � � T S��� Tn ���� �

T S��� T� �� T� �� �
T S��� T� ��
sb
� T S��� T� ���� �

Then T S��� �� �� � �� since �� is the identity of � up to isomorphism� and

T S��� T� �� T� �� �
T S��� T� ��
sb
� T S��� T� ������

Proposition ���

For all types T and type de�nitions D� the domain T S��� T ��
T S�defns �� D ��� is isomorphic

to
T S�� T ��
T Sdefns �� D ������

Sketch Proof

The essential fact is that �� on domains is continuous in the sense described in Sec�

tion ���� Using the isomorphisms U��V� ��
U � V �� and U�
sb
� V� ��
U � V �� and

the de�nitions of T S and T S�� it is a simple structural induction on types to show

that for each type de�nition� each approximating domain in the lifted semantics is

isomorphic to the lift of the corresponding domain in the standard semantics� hence

for each type de�nition� and therefore every type� the result holds� The base case for

a recursively�de�ned type is the interpretation of the unit type� �

CHAPTER �� SOURCE LANGUAGE AND STANDARD SEMANTICS ��

There is a small notational di�culty to be resolved� For boxed type� the domain

T S��� T �� is of the form U� for some U � and lift � denotes an element of this do�

main� For product type T the corresponding domain is isomorphic to U� for some

U � and it is not clear how the element equal to lift � � U� under the isomorphism

should be denoted without knowing the subcomponents of T� For example� for pairs

lift �� lift �� would not be correct if either of the components were of product type�

We solve this problem by slight abuse of the notation and allow lift � to denote this

element� Similarly we may write �� and �� to denote projections on domains corre�

sponding to product types� and de�ne them as though they are on domains of the

form U��

����� Expression semantics

Let h be the implied isomorphism from
T S�� T ���� to T S��� T ��� Then there are functions

���� lift
�� and drop �� implicitly indexed by type de�nitions D and type T� equal to ���

lift � and drop up to isomorphism� respectively� de�ned by

lift � � T S�� T �� � T S��� T �� �

lift � � h � lift �

drop � � T S��� T �� � T S�� T �� �

drop � � drop � h�� �

and for f � T S�� T� ��� T S�� T� ���

f�� � T S��� T� ��
sb
� T S��� T� �� �

f�� � � � �

f��
lift
� x � � lift �
f x � �

Clearly we want ES��� e �� �
ES�� e ����� � Now given two functions f � U � V and

g � U� � V� we have g � f� i� f and g are logically related by lift � lift and g

is strict	 similarly ES��� e �� �
ES�� e ����� i� E
S�� e �� and ES��� e �� are logically related by

lift � � lift � and ES��� e �� is strict� Proposition ��� guarantees that if for the standard�

and lifted�semantics versions of the constants the type relation at each type is lift �

then the same holds for the evaluation functions� We now claim that if all of the

lifted�semantics versions of the constants are strict in every argument then so is

ES��� e ��
this can be proven by a simple induction on the structure of e� In the S�

semantics it is important that that mkunit and mkinti be functions of an environment

to guarantee this strictness�

For each de�ning constant con with functionality of the form T �� T� �� � T �� T� �� we

de�ne conS� �
conS��� � For constants with functionality of the form
T �� T� ��� � � ��

CHAPTER �� SOURCE LANGUAGE AND STANDARD SEMANTICS ��

T �� Tn ���� T �� T �� we de�ne conS� �
conS��� � smash	 this is just a generalisation of

the previous case� guaranteeing that conS� is strict in every argument� Finally� for

�xS� �
T S��� T �� � T S��� T ��� � T S��� T �� the argument must be either the constant

bottom function or some strict bottom�re�ecting function since it is the result of

applyS��

The de�nitions are detailed following� We use the symbol �� pronounced �strict

lambda� to simplify de�nition of strict functions	 � is de�ned by

�x �f x � � � � �

�x �f x � v � f v � if v �� � �

The lifted semantics of the unit type is ��� so

mkunitS� � ���lift
� �

For integers there is one more level of lifting than in the standard semantics� so

mkintS�i � ���lift� i �

The constant plusS� has two arguments� so

plusS�
�� y� � � �

plusS�
x ��� � � �

plusS�
lift x � lift y� � lift
plusS
x � y�� �

The tuple constructor gives an element of a smash product�

tupleS� � smash �

and nullary tupleS� is lift
�� the identity
up to isomorphism� of smash� Also�

selS�i � 	i � unsmash �

The sum constructor gives an element of a lifted coalesced sum�

incS�i � � � �

incS�i x � lift
ini x �� if x �� � �

and

outcS�i � � � �

outcS�i
lift �� � � �

outcS�i
lift x � � outi
drop x �� if x �� � �

The function chooseS� is strict in every argument� otherwise

chooseS�
lift �� x�� � � � � xn� � lift � �

chooseS�
lift
i � v�� x�� � � � � xn� � xi �

CHAPTER �� SOURCE LANGUAGE AND STANDARD SEMANTICS ��

In the lifted function space value � acts as the constant � function and value lift f

acts as f � Thus

applyS� � drop �

The function mkfunS� is strict in both arguments� otherwise

mkfunS�
f � �� � lift f �

Finally� the argument of �xS� is either the constant bottom function or some strict

bottom�re�ecting function� so

�xS� � � � �

�xS� f � ti�� f
i
lift ��� if f �� � �

The de�nition may be made total by expressing it as �xS� f �
F
i�� f i
lift ���

Proposition ���

For all e the function ES��� e �� is strict� and ES�� e �� is related to ES��� e �� by lift � � lift ��

�

����� Operational interpretation of lifting

There is an intuitive operational interpretation of the extra level of lifting in the

lifted semantics� Recall that in the standard semantics lifting at the top level
for

boxed types� distinguishes between expressions that do and do not have WHNFs�

In a simple�minded implementation of a lazy or non�strict language� a potential

computation
a means of producing a value if it is demanded
is embodied by a

closure� a pointer to an expression�
Product types give rise to tuples of closures	

unboxed function types the corresponding expression�� The value associated with a

closure in the standard semantics is just the value of the expression pointed to� The

lifted semantics explicitly models the pointer with the extra outer lifting�

Evaluating a closure requires dereferencing the pointer� reducing the expression� and

replacing the expression with its reduced equivalent� e�ectively returning the pointer

of a simpli�ed closure� Semantically� dereferencing a pointer corresponds to the op�

eration drop� Reduction of the expression fails to terminate exactly when its value is

� in the standard semantics� that is� when the value of the expression is lift � in the

lifted semantics	 evaluating the closure
dropping lift �
yields �� representing non�

termination as usual� Returning a pointer to the updated expression corresponds to

the semantic operation lift � but this only occurs if reduction terminates� Thus the se�

mantic model of evaluation of a closure is application of the function
�x�lift x��drop�

CHAPTER �� SOURCE LANGUAGE AND STANDARD SEMANTICS ��

In partial summary� in the lifted semantics� value� models non�termination
or error�

as usual� For boxed types value lift � models a pointer to an expression with no

WHNF� and values above lift � model pointers to expressions that do have WHNF�

For product types the interpretation is applied recursively to the tuple components�

����� Operational interpretation of projections

A projection maps every argument to one of its �xed points� so a projection determines

an equivalence relation on its argument domain� each equivalence class consisting of

those values mapped to a particular �xed point� We may think of projections as

equivalencing operational behaviour via the operational interpretation of
semantic�

values just described� For example� the operation of evaluating a closure was shown

to be semantically equivalent to
�x�lift x� � drop� This function is the projection

ID�� which equates non�termination with a closure that if evaluated would fail to

terminate� since values lift � and � are in the same equivalence class	 ID� encodes

the operational notion of evaluation to WHNF� For backward strictness analysis

we think of projections as encoding demands for evaluation	 for forward termination

abstraction as encoding assertions that evaluation will terminate�

Recall that if f denotes f then f is strict i� ID� � f� v f� � ID�� or equivalently�

ID� � f� � ID� � f� � ID�� Giving operational interpretations to projections gives

a direct operational reading of such equations� here� rather than �rst deducing that

f is strict and from that an operational conclusion� we can read that if evaluation

of an application of f is demanded then evaluation of its argument may be safely

demanded�

For termination analysis� recall that if f denotes f and ID� � f� w f� � ID�� or

equivalently� ID� � f� � ID� � f� � ID�� then if evaluation of the argument of f

terminates then so does evaluation of the application of f�

Next we consider the other three basic projections ID�� BOT�� and BOT�� The pro�

jection ID� equivalences every value with itself and so tells nothing� The projection

BOT� equivalences all closures with the closure that fails to terminate if evaluated�

implying that if evaluation is ever initiated it may immediately diverge or produce an

error� For backward strictness analysis the interpretation is that evaluation is never

required� for forward termination analysis it encodes guaranteed non�termination� It

is useful to think of BOT� as modelling the operation of setting a pointer to a special

value null that causes divergence or an error if dereferenced� The projection BOT�

equivalences every value with �� specifying automatic divergence or error� For back�

ward strictness analysis it may be thought of as specifying unsatis�able demand
the

CHAPTER �� SOURCE LANGUAGE AND STANDARD SEMANTICS ��

intersection of no demand and demand for evaluation to WHNF�	 for forward ter�

mination abstraction as specifying an impossible termination property
termination

with value ���

Next we consider the interpretation of projections between BOT� and ID� and be�

tween BOT� and ID�� The interpretation is de�ned compositionally in terms of type

structure� For the boxed types the basic interpretation is as follows� A projection of

the form �� is less than ID�� so �� maps lift � to � and so speci�es evaluation at

least as far as WHNF� Once to WHNF� � tells what to do next
hence ���s worth ��

A projection of the form �� means if evaluation is ever demanded� after reaching

WHNF apply the interpretation of � to the result�

Case c� T� � � � � � cn Tn� Recall that

T S��� c� T� � � � � � cn Tn �� �
T S��� T� �� � � � � � T S��� Tn ���� �

Now every projection on a domain of the form
U� � � � �� Un�� can be expressed as

either �� or �� where � has the form ��� � � �� �n� If evaluation to some WHNF ci e

occurs� the interpretation of �i is applied to e�

For sum type c� T� � � � � � cn Tn let the Ci be the projection transformer de�ned by

Ci � j T S��� Ti �� j � j T S��� c� T� � � � � � cn Tn �� j �

Ci � �
BOT� � � � �� � � � � �BOT��� �

Then every eager element of j T S��� c� T� � � � � � cn Tn �� j can be expressed in the

form
F
��i�n Ci �i� Operationally� Ci �i speci�es evaluation to WHNF ci e with the

interpretation of �i on e�

At this point it is worth performing a consistency check on the two interpretations of

projections for sum types given� We have stated that in general BOT� means �set

the pointer to null� and that
BOT� � BOT��� means �if ever evaluated to WHNF�

diverge for any result� Now BOT� �
BOT� � BOT���� so these interpretations

should be equivalent� and in fact they are�

Case �T�� � � � �Tn�� For product types� projections of the form �� � � � � � �n are

interpreted componentwise on their arguments� For nullary products there are no

components to evaluate� the sole eager projection on ��� which may be denoted by

either ID� or BOT�� maps every value to �� and hence speci�es immediate termi�

nation or error	 the sole lazy projection� which may be denoted by ID� or BOT��

requires nothing�

CHAPTER �� SOURCE LANGUAGE AND STANDARD SEMANTICS ��

For product type not every projection is of the form ���� � ���n� We claim that there is

no natural sequential interpretation of projections other than those of this form� hence

for the purposes of sequential computation we take the operational interpretation of

any projection � to be that of the least projection of this form greater than �� We

claim that every projection has a unique parallel operational interpretation� every

projection can be expressed as the lub of a set of projections in this form� and the

operational interpretation is the parallel evaluation according to each element of the

set� For example� the projection ID��ID� speci�es evaluation of the �rst component

of its argument pair� while ID� � ID� speci�es evaluation of the second� Their lub

is not expressible as a smash product� it speci�es parallel evaluation until one or

the other of the components reaches WHNF	 it is the least projection � such that

ID� � lub� v lub� � �� The least projection greater than their lub expressible as a

product is ID� � ID�
the identity�

Case T� �� T�� Recall that

T S��� T� �� T� �� �
T S��� T� ��
sb
� T S��� T� ���� �

For unboxed functions the only operational choices are to do nothing or uncondition�

ally diverge or produce an error� so the operational interpretation of all projections

other than BOT� is that of ID�� In this context unboxed function types are treated

like the unit type� or equivalently� function spaces are treated like the one�point do�

main� Then for boxed functions with values from

T S��� T� �� T� �� �
T S��� T� ��
sb
� T S��� T� �����

there are four distinct operational interpretations of projections� precisely those of

ID�� ID�� BOT�� and BOT��

We will alternate between two notations for projections� For example� for projec�

tions on T S��� Bool �� we may use the more readable constructor notation TRUE
�

for
BOT� � BOT���� similarly for projections on T S��� Int �� the expression Ni
�

denotes the least projection that acts as the identity on lift� i	 in this context
�

denotes BOT�� Only in the constructor notation will we use the names STR and

ABS 	 further� following �WH��� we will use FAIL as a synonym for BOT�� Finally�

for projections corresponding to nullary constructors such as nil� true� false� and

ni we may omit the argument
��

CHAPTER �� SOURCE LANGUAGE AND STANDARD SEMANTICS ��

����� Unboxed types

This discussion is motivated by Peyton Jones and Launchbury�s description of un�

boxed types �PJL����

We have shown that Int may be regarded as an in�nite sum of nullary products�

Another approach to de�ning the integer type is to provide the unboxed integer type

Int� as primitive and de�ne Int to the the unary sum int Int�� where

T S�� Int� �� � Z

and

T S��� Int� �� � Z� �

Then e� � e� would be short for

case e� of

int i� �� case e� of

int j� �� int �i� �� j��

with generic semantics of e� �� e� being

E �� e� �� e� �� � � plus%
E �� e� �� �� E �� e� �� �� �

with plus%S ordinary addition on Z� and plus%S� de�ned like plusS� In turn� Int�

is imagined to be the in�nite unboxed sum

unboxed Int� � � � � � n�� �� � n� �� � n� �� � � � �

where �nite unboxed sum unboxed c� T� � � � � � cn Tn has standard semantics

T S�� unboxed c� T� � � � � � cn Tn �� � T S�� T� �� " � � � " T S�� Tn �� �

where " is categorical sum� The lifted semantics would be

T S��� unboxed c� T� � � � � � cn Tn �� � T S��� T� �� � � � � � T S��� Tn �� �

There is no problem with extending our treatment to handle general unboxed types

in the lifted world because all types are still mapped to domains� The problem is

that for binding�time analysis we want to work in the standard world� and the use of

categorical sum yields structures more general than domains
namely unpointed do�

mains�� and the theory of Chapter � and Chapter � would have to be correspondingly

generalised�

Chapter �

First�Order Analysis

For binding�time analysis the appropriate starting point is the standard expression

semantics
domain and function lifting is not required� The lifted semantics S� was

developed speci�cally so that backward strictness abstraction and forward termina�

tion abstraction of ES��� e �� could reveal the desired strictness and termination prop�

erties of ES�� e ��	 for these analyses the starting point is the lifted semantics� This

chapter presents non�standard semantics that yield these abstractions� The analysis

techniques are restricted to expressions
and free�variable environments� of zero�order

type� that is� with type not containing ��� Two methods of handling �rst�order func�

tions
that is� functions between domains corresponding to zero�order types� are also

given�

Though the �rst�order techniques do not generalise directly to higher order� the de�

velopment lays much of the groundwork for the higher�order techniques described in

Chapter �� providing a bridge to understanding the more complicated higher�order

analysis
all of the development for zero�order analysis will carry over into the devel�

opment for higher�order�

A type is zero order if it does not contain ��� A value is zero order if it comes from a

domain corresponding to a zero�order type� An expression is zero order if it and all

of its subexpressions have zero�order type� Necessarily� a zero�order expression does

not contain the forms
�x�e� fix� e� or app� e� e�� and the values of the constants

mkfun� apply � and �x need not be considered� The S and S� type and expression

semantics and de�ning constants restricted to zero�order types and expressions will

be indicated by S� and S�� respectively� In this chapter� unless speci�ed otherwise�

all types and expressions are zero order�

��

CHAPTER �� FIRST	ORDER ANALYSIS ��

��� Abstracting Dependency on the Environment

We require semantics that yield backward strictness� forward strictness� and forward�

termination abstractions of ES��� e ��� We start by de�ning an intermediate N� seman�

tics that abstracts the dependency of the standard value of e on the environment�

such that the value of e is a function from environments to standard values�

Let e be a �top�level� expression� that is� one that is not a subexpression of some

other expression� and call the environment in which it is evaluated the top�level or

global environment� The function de�ning the dependency of the value of e on the

global environment is precisely ���ES��� e �� �� or just ES��� e ��� However� the value of

every subexpression of e depends on the value of a local environment which in general

di�ers from the global environment� it may contain new bindings introduced by sum

and tuple decomposition
and at �rst and higher order by function abstraction�� Still�

every local environment is a function of the global environment� so the value of every

subexpression is� if indirectly� a function of the global environment� The N� semantics

will allow us to make explicit the dependency of the value of every subexpression on

the global environment�

Let Egl be a �xed zero�order type� which we may conveniently think of as the type

of global environments� In the N� semantics of zero�order expressions de�ned in this

section� the value of an expression of type T is a function from standard values in

T S��� Egl �� to standard values in T S� �� T ��� so the N� semantics of zero�order types is

T N��� T �� � T S� �� Egl �� � T S� �� T �� �

The type predicate between standard and N� values at each type T is parameterised

by a global environment � � T S� �� Egl �� and denoted by RS�N��� T ��� de�ned by

RS�N�
� �� T �� �
T S� �� T �� � T N��� T ���

i
� Truth �

RS�N�
� �� T ��
d � g� �
d � g �� �

For e
T with environment type E we have EN��� e �� � T N� �� E ��� T N��� T ��� that is�

EN��� e �� �
T S� �� Egl �� � T S� �� E ��� �
T S� �� Egl �� � T S� �� T ��� �

in other words EN��� e �� maps functions from global environments to local environments

to functions from global environments to standard values�
The families of functions

T N�� RS�N�
� and EN� have the global environment type as an additional implicit

type index�� Let �S� range over local environments� � over global environments�

and �N� over N� environments� that is� functions from global environments to local

environments� The required relation between the semantics is then

�� � �S� � �N� � �
ES� �� e �� �S�� �
EN��� e �� �N�� � �

CHAPTER �� FIRST	ORDER ANALYSIS ��

Thus for functions �N� from global environments to local environments

�� � ES��� e ��
�N� �� �
EN��� e �� �N�� � �

so ES� �� e ����N� � EN��� e �� �N�� In particular� when �N� is the identity function id the

type Egl coincides with E� and ES��� e �� � EN��� e �� id �
Intuitively� id is the appropriate

environment for the top�level expression
it just maps the global environment to

itself� In general� subexpressions are evaluated in a di�erent environment that is the

appropriate transformation of the global environment	 examples will be given��

It is straightforward to de�ne N� constants correctly related to the S� constants� each

constant conN� is de�ned by

conN�
g�� � � � � gn� � conS� � hg�� � � � � gni �

This is spelt out in detail following�

The constant mkunitN� is a constant function of its environment argument�

mkunitN� � � mkunitS� � �

�
���
�� � �

� ���
� �

Numeric constants are similarly independent of their argument�

mkintN�

i � � mkintS�i � �

�
���lift i� � �

� ���lift i �

Expressions of integer type have values that yield integers when applied to the global

environment�

plusN�
g�� g�� � plusS� � hg�� g�i

� ���plusS�
g� �� g� �� �

Tuple formation requires propagation of the global environment to each of the com�

ponents�

tupleN�
g�� � � � � gn� � tupleS� � hg�� � � � � gni

� ���
g� �� � � � � gn �� �

Values of product type must be applied to a global environment to yield a tuple�

selN�

i g � selS�i � g �

The de�nitions of the other constants follow the same pattern�

incN�

i g � incS�i � g �

outcN�

i g � outS�i � g �

CHAPTER �� FIRST	ORDER ANALYSIS ��

chooseN�
g�� � � � � gn� � chooseS� � hg�� � � � � gni

� ���chooseS�
g� �� � � � � gn �� �

Proposition 	��

The semantics ES� and EN� are related by RS�N�� �

We give two detailed examples to make the idea clear� Here elements of Int will be

written without explicit lifting� for example � instead of lift �� and addition for Int

will be written " instead of plusS� Let Egl be �Int�Int�� and �N� � 	� � 	� � id � so

that �N� �� x� �� � 	� and �N��� x� �� � 	�� Then

EN��� x� � x� �� �
N�

� ���	� � " 	� �

� ES��� x� � x� �� � �N�

� ES��� x� � x� �� �

as required�

For the second example let Egl be Int� and �N� � �N� �� x� �� � ���� " �� Then

EN��� let x� � x� � � in x� � � �� �N�

� EN��� x� � � �� �N� �x� �� EN��� x� � � �� �N� �

� EN��� x� � � �� �N� �x� �� ���
EN� �� x� �� �
N� �� "
EN��� � �� �N� ���

� EN��� x� � � �� �N� �x� �� ���
� " �� "

����� ���

� EN��� x� � � �� �N� �x� �� ���� " � " ��

� ���
EN��� x� �� �
N� �x� �� ���� " � " �� �� "
EN��� � �� �N� �x� �� ���� " �� ��

� ���� " � " � "

����� ��

� ���� " � " � " � �

which is equal to ES��� let x� � x� � � in x� � � �� � �N� � as required�

Bearing in mind that EN��� e �� �N� � ES��� e �� � �N� � we require abstractions of ES��� e ��

for all e� This suggests the next step is to abstract the N� semantics� for forward

strictness we require a semantics EF� such that if � is a FSA of �N� then EF��� e �� � is a

FSA of EN��� e �� �N� � and hence of ES��� e �� � �N� � For backward strictness and forward

termination we want abstractions of ES�� �� e ��� and hence require a corresponding lifted

version EN�� of EN�� The N�� semantics of types is

T N�� �� T �� � T S�� �� Egl ��
sb
� T S�� �� T �� �

Then T N�� �� T �� �� T N� �� T �� for all T� Also

EN�� �� e �� �
T S���� Egl ��
sb
� T S�� �� E ��� �
T S���� Egl ��

sb
� T S�� �� T ��� �

so EN��� e �� and EN�� �� e �� come from isomorphic domains	 their respective argument

and result domains are isomorphic� and they are equal up to the implied isomorphism�

CHAPTER �� FIRST	ORDER ANALYSIS ��

The required relation between the S�� and N�� semantics is de�ned as follows�

RS��N��
� �� T �� �
T S�� �� T �� � T N�� �� T ���

i
� Truth �

RS��N��
� �� T ��
d � g� �
d � g �� �

Given � � T S�� �� Egl ��� d � T
S���� T ��� and g � T N���� T �� � T S�� �� Egl �� � T S�� �� T ��� we

have g � h�� for some h� and RS��N��
� �� T ��
d� g� holds i� � � � and d � �� or � �� �

and d �� � and RS�N�

�drop � �	�� T ��
drop
� d� h��

The N�� constants are de�ned in terms of the S�� constants exactly as the N� constants

is de�ned in terms of the S� constants� for each constant conN�� we have

conN��
g�� � � � � gn� � conS�� � hg�� � � � � gni

�
conS���� � smash � hg�� � � � � gni

�
conS���� � hhg�� � � � � gnii �

The detailed de�nitions of the N�� constants are similar to those given for the N�

constants�

Proposition 	��

The S�� and N�� de�ning constants� and therefore the semantic functions ES�� and

EN��� are related by RS��N�� � �

��	 Strictness Analysis

We start with an overview of the development� First the N�� semantics is abstracted

to yield the zero�order backward strictness semantics B�	 the B� semantics yields

least BSAs and therefore determines the S� semantics� We then de�ne a �rst�order

language and its standard S� and lifted S�� semantics� The zero�order semantics B�

is extended to a �rst�order semantics B� in the manner of �WH���	 the B� semantics

still yields least BSAs and so determines the �rst�order semantics S�� Next is the

�rst abstraction step in which projection domains are restricted to the �sequential�

projections of Section ������ inducing abstract semantics B�
� and B�

� � The zero�order

abstract semantics B�
� still determines the S� semantics� but the B�

� semantics does

not determine the S� semantics� We then give an alternative �rst�order backward

strictness semantics B� in the manner of �DW���	 its abstraction B�
� does determine

the S� semantics� suggesting that it is the �correct� semantics at �rst order� Next comes

the second abstraction step in which �nite projection domains are chosen at each type�

This gives a surprising result� when restricted to these �nite projection domains the

B� semantics of case expressions gives results that in general are incomparable to
the

analog of� the semantics of case given in �WH���� We show how the two semantics

may be combined to yield a semantics that is strictly better than either�

CHAPTER �� FIRST	ORDER ANALYSIS ��

As stated� the goal is to abstract the N�� semantics to yield the zero�order backward

strictness semantics B�� We require that if �B� is a BSA of �N�� then EB��� e �� �B� be

a BSA of EN�� �� e �� �N�� and hence of ES�� �� e �� � �N�� 	 in particular� when �N�� is the

identity its least BSA is the identity ����� and EB��� e ��
����� is a BSA of ES���� e ���

Let Proj T denote the lattice of projections j T
S�� �� T �� j� and let Egl be the type of global

environments� as before� Then T B� �� T �� shall be the domain of BSAs for functions in

T N���� T ��� so

T B� �� T �� � Proj T
B
� Proj Egl �

For e
T with environment type E we have EB� �� e �� � T B� �� E ��� T B� �� T ��� so

EB� �� e �� �
Proj E
B
� Proj Egl � �
Proj T

B
� Proj Egl � �

so EB��� e �� is a function from projection transformers to projection transformers�

The type predicate between values g and � in the N�� and B� semantics requires that

� be a BSA of g� that is�

RN��B� �� T �� �
T N�� �� T �� � T B� �� T ���
i
� Truth �

RN��B� �� T ��
g � �� � �� � � � g v g �
� �� �

Recall that each N�� constant conN�� is de�ned by

conN��
g�� � � � � gn� �
conS���� � hhg�� � � � � gnii �

and if �i is a
least� BSA of gi for � 	 i 	 n then

���
F
f
�� ��� & � � � &
�n �n� j �� � � � �� �n v �g

is a
least� BSA of hhg�� � � � � gnii� Hence each B� constant is de�ned by

conB�
��� � � � � �n�

� j
conS���� j �
B ���

F
f
�� ��� & � � � &
�n �n� j �� � � � �� �n v �g �

When the constant has a single argument this simpli�es to conB� � � j
conS���� j�
B � �

The detailed de�nitions are given following�

We intend all BSAs � to have the guard property	 in particular to map ABS to ABS

and to be distributive with respect to ABS� that is that � �� � �
BOT� t ��� �

� BOT�� t
� ��� � BOT� t
� ���� We will write ����f
�� to mean

����f
��� �� � f
�� �

����f
��� �� � BOT� t f
�� �

Use of this pattern�matching lambda de�nes projection transformers that are dis�

tributive with respect to ABS � map ABS to ABS and FAIL to FAIL when f is strict�

CHAPTER �� FIRST	ORDER ANALYSIS ��

and are distributive when f is distributive� Equivalently� we may write f �� � g
��

to mean that f is equal to ����g
���

For v � V�� v �� �� and given domain U�� de�ne the characteristic projection trans�

former
for backward strictness abstraction� ACCEPTv to be the least BSA of the

lifted constant function �x�v � U�
sb
� V�� de�ned by

ACCEPTv � jV� j
B
� jU� j �

ACCEPTv �� � BOT�� if �� v � � �

ACCEPTv �� � BOT�� if �� v �� � �

Intuitively� ACCEPTv accepts
maps to BOT�� any projection that accepts v
that

is� does not map v to ��� and maps all other projections to BOT�� Then ACCEPTv

maps every projection less than NOKv to BOT�� and all other projections to BOT��

Also� for all �nite u we have that ACCEPTv �u is BOT� if u v v� and BOT�

otherwise� Then ACCEPTv determines v and is a continuous function of v�

The least BSA of mkunitS�� � ���lift
� is ACCEPTlift �	� so

mkunitB� � � ACCEPTlift �	 �
B �

�
����BOT�� �
B � �

For integer constants

mkintB�i � � ACCEPTlift� i �
B � �

The other unary constants are de�ned similarly� The least BSA of selS��i is

j selS��i j � j
Ti�� j
B
� j
T��� � � � ��
Tn�� j �

j selS��i j �� � BOT� � � � �� BOT� � �� � BOT� � � � �� BOT� �

where �� appears in the i th position on the right�hand side� The least BSA of incS��i

is

j incS��i j � j

T��� � � � ��
Tn���� j
B
� j
Ti�� j �

j incS��i j
�� � � � �� �n�� � �i �

The least BSA of outS��i is

j outS��i j � j
Ti�� j
B
� j

T��� � � � ��
Tn���� j �

j outS��i j �� �
BOT� � � � �� BOT� � �� � BOT� � � � �� BOT��� �

where �� appears in the i th position on the right�hand side�

Recall that Ni is the least projection that acts as the identity on lift� i � The least

BSA of
plusS���� is

j
plusS���� j � ����
F
fNi � Nj j Ni�j v ��g �

CHAPTER �� FIRST	ORDER ANALYSIS ���

Composition and simpli�cation gives

plusB�
��� ��� � ����
F
f
�� Ni� &
�� Nj � j Ni�j v ��g �

The function
tupleS���� is the identity� so

tupleB�
��� � � � � �n� � ���
F
f
�� ��� & � � � &
�n �n� j �� � � � �� �n v �g �

It is not hard to show that the least BSA of
chooseS���� is

j
chooseS���� j ��

�
F
��i�n

Ci BOT��� BOT� � BOT� � �� � BOT� � � � �� BOT�� �

where �� appears in position i " �� Intuitively� this means that to evaluate a case

expression in eager context ��� the selector must be evaluated to some WHNF and

the corresponding branch evaluated in context ��� and all other branches ignored�

Thus

chooseB�
��� � � � � �n� � ��� �
F
��i�n

��
Ci BOT��� &
�i ���� �

It is interesting to consider what the de�nition of plusB� would be were Int de�ned as

an in�nite sum� and plusS� de�ned in terms of a case expression� From the de�nition

of chooseB� we would get

plusB�
��� ���

� ��� �
F
i�Z

F
j�Z
�� Ni� &
�� Nj � &
ACCEPT

lift� �i�j 	
��� �

Now ACCEPT
lift� �i�j	

�� � BOT� exactly when Ni�j �v ��� Recalling that

BOT� & � � BOT� for all �� it is a simple step to show that the two de�nitions

are equivalent�

Proposition 	��

The semantic functions EN�� and EB� are correctly related� �

Following� we make use of the fact that application of the N� de�ning constants is

composition with the S� de�ning constants�

Proposition 	��

For all expressions e the functions ES��� e �� and ES�� �� e �� are stable�

Proof

Recall that ES��� e �� � EN��� e �� id 	 and EN��� e �� id is de�ned entirely in terms of the

S� constants� id � composition� and h�� � � � � �i	 the S� constants and id are stable	 and

composition and h�� � � � � �i preserve stability� For ES�� �� e �� we need only observe that it

is equal to ES� �� e �� up to isomorphism	 alternatively� that smash is stable and lifting

preserves stability� �

CHAPTER �� FIRST	ORDER ANALYSIS ���

Let T N
s
���� T �� be the restriction of T N�� �� T �� to stable functions� and let

RNs
��
B� �� T ��
g� �� assert that � is the least BSA of g�

Proposition 	�	

The functions EN�� and EB� are related by RNs
��
B� �

Proof

Since ES���� e �� is stable� EN�� �� e �� g � ES�� �� e �� � g � and composition preserves stabil�

ity� we have that EN�� �� e �� maps stable functions to stable functions for all e� Next�

EB� �� e �� maps the least BSA of each stable function g to the least BSA of EN�� �� e �� g 	

this follows from the fact that the B� constants preserve leastness� �

Thus the B� semantics is optimal with respect to least abstractions of stable functions�

We can do better� Let DLST be the restriction of RN��B� �� T� �� � RN��B� �� T� �� such

that DLST
F �T � asserts that F maps stable functions to stable functions� T is

distributive� and T
�� is the least BSA of F
g� when g is stable and � is the least

BSA of g � hence� by Proposition ����� that T is the least function related to F by

RN��B� �� T� ���RN��B� �� T� ���

Proposition 	��

The functions EN���� e �� and EB� �� e �� are related by DLST for all e�

Proof

We need only show that the B� constants are distributive	 this follows from the fact

that all projection transformers� composition� &� and lub are distributive� �

In other words� EB��� e �� is the least function correctly related to EN�� �� e �� �

�g�ES�� �� e �� � g� hence EB��� e �� � � j ES�� �� e �� j �B � � Since abstract composition pre�

serves leastness when its �rst argument is the least BSA of a stable function� we have

that for � the least BSA of g� the projection transformer EB��� e �� � is the least BSA

of EN�� �� e �� g and therefore of ES�� �� e �� � g� and in particular� when g is id its least

BSA is ����� and EB��� e ��
����� is the least BSA of ES�� �� e ��� and hence determines

ES��� e ���

If the language were extended with some parallel construct with an associated non�

stable de�ning constant� the corresponding backward strictness semantics would be

safe� optimal with respect to smash projections� and distributive�

Example� Recall Bool � true �� � false ��	 let b
Bool� x
Int� and y
Int be

variables with corresponding type E of environments equal to �Bool�Int�Int�� with

the values of b� x� and y in the �rst� second� and third positions� respectively� Let e

stand for the expression

CHAPTER �� FIRST	ORDER ANALYSIS ���

case b of

true �� �� x

false �� �� y �

The generic semantics E �� e �� � of this expression is choose
sel� �� sel� �� sel� ��� Let

�B� be ����� the least BSA of the identity� Then

�B� �� b �� � selB�� �B� � ����
�� � ABS � ABS � �

�B� �� x �� � selB�� �B� � ����
ABS � �� � ABS � �

�B� �� y �� � selB�� �B� � ����
ABS � ABS � ��� �

Then

EB� �� e �� �B�

� ��� �

TRUE � ABS � ABS � &
ABS � �� � ABS ��

t

FALSE � ABS � ABS� &
ABS � ABS � ����

� ��� �
TRUE � �� � ABS� t
FALSE � ABS � ��� �

This is the least BSA of ES���� e ��� It reveals that in context �� that b is certain to

be evaluated� and that if b is true then x is evaluated in context ��� and if b is false

then y is evaluated in context ���

Now let g � �
b� x � y��
b� x � x �� that is� a function from environments mapping the x

component into both the x and y positions� The least BSA �B� of g� is given by

�B� �� b �� � ����
�� � ABS � ABS � �

�B� �� x �� � ����
ABS � �� � ABS � �

�B� �� y �� � ����
ABS � �� � ABS � �

Then the least BSA of ES�� �� e �� � g� is EB� �� e �� �B� � which is

��� �
TRUE � �� � ABS � t
FALSE � �� � ABS �

� ��� �
STR � �� � ABS� �

indicating that in context �� the x component of the argument of ES���� e �� � g� is

evaluated in context ��� In particular� this function is strict in the x component	 this

demonstrates that ES���� e �� is jointly strict in the x and y components of its argument�

Example� Let x
Int be a variable with corresponding type E of environments be

Int� The expression to be analysed is x � �� Let �B� be ����� the least BSA of the

identity� then EB��� x � � �� �B� maps� for example Ni to Ni�� for all i � the lub ti�SNi

where S � Z� to ti�SNi��� and in particular STR
the lub of all Ni� to STR�

CHAPTER �� FIRST	ORDER ANALYSIS ���

����� First approach to �rst�order analysis

The analysis technique given is only zero order rather than �rst order� since there is no

mechanism for de�ning functions� or applying non�primitive functions� In this section

we describe an approach to �rst�order analysis like that of �WH���� We have been

careful to make the distinction between the zero order and �rst�order constructions

for two reasons� First� the �rst�order syntax and semantics is most easily handled

by moving outside
augmenting� the standard language� Second� the details of zero�

order analysis will carry over directly into the higher�order development� unlike the

�rst�order additions�

First we introduce the new syntactic class of function variables�

f � FVar �Function variables��

and extend the zero�order expression language to the �rst�order language by adding

the application form f e� Since functions are not �rst class there are no expressions of

function type� no notion of evaluating a function� and hence no need for the function�

space lifting of the lazy lambda calculus� so each function variable has an associated

�rst�order unboxed function type� that is� a type of the form T� �� T� where T� and

T� are both zero order�

In the following G� indicates an arbitrary �rst�order semantics� which will be partially

de�ned in terms of a zero�order semantics G�� For function variables fi � Ti �� Ui �

� 	 i 	 n� we take function environments to be tuples from the domain

FEnvG� � T G� �� T� �� U� �� � � � � � T G� �� Tn �� Un �� �

As is usual� the �rst�order semantic functions will take as a separate argument a

function environment� so for expression e of type T with environment type E and

function environment from domain FEnvG��

EG� �� e �� � FEnvG� � T G� �� E �� � T G� �� T �� �

For all syntactic constructs other than f e the semantics EG� is de�ned like EG� except

that the function environment must be passed along� The semantics of application is

de�ned in terms of the constant applyG� by

EG� �� f e ��
 � � applyG�
�� f ��
EG� �� e ��
 �� �

where function�environment lookup is indexing� that is
�� fi �� � 	i
�

The required relation between two �rst�order semantics EG� and EH� is� for expression

e of type T with environment type E and function environment from domains FEnvG�

CHAPTER �� FIRST	ORDER ANALYSIS ���

and FEnvH� respectively�

RG�H��� T� �� U� �� � � � � � RG�H� �� Tn �� Un ��� �

RG�H��� E �� �

RG�H��� T �� �

where

RG�H��� T� �� T� �� �
T G� �� T� �� T� �� � T H� �� T� �� T� ���
i
� Truth �

Now

applyG� � T G� �� T� �� T� �� � T G� �� T� �� � T G� �� T� �� �

and the required relation between applyG� and applyH� is

RG�H��� T� �� T� �� � RG�H� �� T� �� � RG�H� �� T� �� �

As before� if all of the relevant de�ning constants are correctly related then so are the

semantics EG� and EH� 	 if we have already shown that G� and H� de�ning constants

are correctly related then we need only de�ne correctly related versions of apply �

Finally� we introduce a syntactic class of �rst�order function de�nitions�

F � FDefns �First�order function de�nitions�

F ��� f�
 T� �� U�

f� x � e�
���

fn
 Tn �� Un

fn x � en �

where each ei is a �rst�order expression of type Ui that may have free variable x of

type Ti
we omit the typing rules for function de�nitions and application
they are

straightforward�� Given a function environment
 we take such a set of equations to

de�ne a function environment mapping each fi to the value EG��� ei ��

a function

from environments for ei
values of zero�order tuple type Ti � �Ei��� � � � �Ei�ai�� to

the value of ei
of zero�order type Ui� in that environment	 fi has type Ti �� Ui �

We de�ne a function EG�defns mapping function de�nitions F to value EG�defns �� F �� in the

corresponding environment domain FEnvG�� The required relation between two such

functions EG�defns �� F �� and E
H�

defns �� F �� is

RG�H��� T� �� U� �� � � � � � RG�H� �� Tn �� Un �� �

Now we de�ne the standard and lifted �rst�order semantics� The standard semantics

of �rst�order types is

T S� �� T� �� T� �� � T S� �� T� �� � T S� �� T� �� �

CHAPTER �� FIRST	ORDER ANALYSIS ���

The �rst�order lifted semantics S�� of �rst�order types di�ers from the higher�order

lifted semantics S� in that lifting of the function space is omitted�� so

T S�� �� T� �� T� �� � T S�� �� T� ��
sb
� T S���� T� �� �

The S� semantics of application is ordinary application�

applyS� f � f �

The S� semantics of �rst�order function de�nitions is the usual least��xed�point se�

mantics�

ES�defns �� F �� � lfp
�
 �
ES��� e� ��
� � � � � ES� �� en ��
�� �

The S�� versions are the same� with S�� replacing S� in the de�nitions��

The value denoted by a function symbol f in the backward strictness semantics is

to be a BSA of the value it denotes in the lifted semantics
we regard this as a

characterising feature of Wadler and Hughes� approach to �rst�order analysis� The

N� semantics is extended to the �rst�order N� semantics in such a way that �rst�order

function de�nitions denote the same functions as in the S� semantics� and so have the

same BSAs� Thus

T N��� T� �� T� �� � T S� �� T� �� T� �� �

and

RS�N� �� T� �� T� ��
f � g� �
f � g� �

and N� application is composition�

applyN� f x � f � x �

In the second approach to �rst�order analysis described later� the corresponding

operation will be ordinary application rather than composition�� It is trivial to show

that applyS� and applyN�
and their lifted counterparts� are correctly related� The

N� semantics of a set F function de�nitions is

EN�

defns �� F �� � lfp
�
 �
EN��� e� ��
 id � � � � � EN��� en ��
 id�� �

The N�� version has the same de�nition except that N�� replaces N�� Note that on

the right�hand side the EN��� ei ��
 are applied to id � the identity of composition� It

is easy to show that the semantics ES�defns and E
N�

defns
and their lifted counterparts� are

correctly related�

�Omitting function�space lifting is just a convenience� If function space lifting were retained then
� would act as the constant bottom function with least BSA the constant bottom function� so the
space of corresponding BSAs�the projection transformers with the guard property�would have to
be lifted as well�

�Notice that we do not require a special �xed point operator as we did for the S� semantics�

CHAPTER �� FIRST	ORDER ANALYSIS ���

Next we de�ne the semantics for �rst�order backward strictness analysis� The required

relation between the N�� and B� semantics at function types is �is a BSA of�� so

T B� �� T� �� T� �� � j T S�� �� T� �� j
B
� jT S�� �� T� �� j �

and

RN�B� �� T� �� T� ��
g � �� � � � � � � g v g �
� �� �

Thus if
S�� and
B� are function environments such that
B� �� f �� is a BSA of

S�� �� f �� for all f� and �B� is a BSA of �N�� � then EB��� e ��
B� �B� is a BSA of

EN���� e ��
S��� �N�� � and hence of
ES�� �� e ��
S��� � �N�� � In particular� when �N�� is

the identity its least BSA is the identity ����� and EB� �� e ��
B�
����� is a BSA of

ES�� �� e ��
S�� �

Since N�� application is composition� B� application is abstract composition�

applyB� �� �� � �� �B �� �

Then applyN�� and applyB� are correctly related�

Proposition 	��

The semantic functions EN�� and EB� are correctly related� �

Just as at zero order we can do better�

Proposition 	��

Let
S�� and
B� be function environments such that
S���� f �� is the least BSA of

stable function
B��� f �� for each f� Then EB� �� e ��
B� is related to EN�� �� e ��
N�� by

DLST �

The proof is the same as for Proposition ���� with an additional case for the application

form� �

Again we could forgo stability and retain leastness with respect to smash projections�

Next we de�ne EB�defns � The least function in T N�� �� T �� is �x �lift � with least BSA the

least function ����BOT� in T B� �� T ��� and the least BSA of id is the identity ����� so

the semantics of function de�nitions F is

EB�defns �� F �� � lfp
�
 �
EB� �� e� ��

������ � � � � EB��� en ��

������� �

Each semantics de�nes the function environment as the limit of an ascending chain�

Let us denote the elements of these chains by
B�i and
S��i for i
 �� with limits
S��

and
B� respectively� where

B�i �
�
 �
EB� �� e� ��

������ � � � � EB� �� en ��

�������i
B��

where

B�� �
����BOT�� � � � � ����BOT�� �

CHAPTER �� FIRST	ORDER ANALYSIS ���

and

S��i �
�
 �
ES�� �� e� ��
� � � � � ES�� �� en ��
��i

S��
�

where

S��� �
�x �lift �� � � � � �x �lift �� �

Now
B�� is correctly related to
S��� 	 by Proposition ��� and induction
B�i is correctly

related to
S��i for all i � and by Proposition ���� the limits are correctly related�

Proposition 	��

The N�� and B� semantics are correctly related� �

Just as for zero�order analysis this does not depend on stability� but stability gives

stronger results�

Proposition 	��

If
S� and
S�� map every function variable to a stable function� then for all e the

functions ES��� e ��
S� and ES�� �� e ��
S�� are stable�

The proof is the same as that for Proposition ���� with an extra case for �rst�order

function application� �

Proposition 	���

For all F the function environment EB�defns �� F �� is the least environment that is correctly

related to EN��defns �� F ���

Proof

Consider the approximating environments just de�ned�
B�� is the least value correctly

related to
N��� 	 by Proposition ��� and induction
B�i is the least value correctly

related to
N��i for all i 	 the
N��i are increasing in the stable ordering
which follows

from the fact that composition is monotonic in the stable ordering�	 the result follows

from Proposition ����� �

Thus EB�defns yields least BSAs� and we conclude that the B� semantics determines the

S� semantics� In light of this� examples would not be very interesting until �delity

is lost by abstracting the projection domains� Nonetheless we give an example that

is commonly used to highlight a weakness of backward strictness analysis� to show

that the loss of accuracy derives from the treatment of �rst�order functions and from

abstracting the projection domains and is not inherent in the method itself�

Example� Consider the functional abstraction of the case expression�

cond �b�x�y� � case b of

true �� �� x

false �� �� y �

CHAPTER �� FIRST	ORDER ANALYSIS ���

where we write f �x�� � � � � xn� � e as convenient shorthand for

f x � let �x�� � � � � xn� � x in e �

and rhs for the right�hand side of the de�nition� Let condS�� and condB� be the

values of this de�nition in the S�� and B� semantics� respectively� so

condB� � EB��� rhs �� � �
����� �

which is exactly what was calculated before functional abstraction� condB� is the

least BSA of condS�� �

����� Abstraction of projection domains

In non�standard interpretation in general there are two basic approaches to choosing

the working set of abstract values for an implementation� The simpler� which we will

adopt� is to �x in advance a �nite set of abstract values at each type� The other

approach involves symbolic
algebraic� manipulation of representations of abstract

values with approximation performed �on the �y�� as required by space and time con�

siderations� typically guided by some heuristics� Such methods tend to be complex�

and the nature of the approximations hard to predict� In some contexts these approx�

imations may tend to be quite good� e�g� as show by Cousot and Cousot for abstract

interpretation �CC���� Seward for term�rewriting �Sew���� and N#ocker for abstract

reduction �N#oc���� On the other hand� Hughes shows that in a context very similar

to ours� seemingly natural approximations can lead to very poor results �Hug����

Choosing a particular �nite abstract domain for a particular analysis technique is an

engineering problem
a balance of tradeo�s� Though we would like the domains to

be as large as possible to obtain high accuracy� the time complexity of analysis is

typically exponential in the sizes of the domains chosen� suggesting that for practical

purposes the domains should be as small as possible� Another consideration is of

what information
here strictness information� is actually exploitable by a compiler�

We will not explore these design spaces� which are research issues in their own right�

instead we will appeal to tradition in the �eld and choose domains that appear to

give potentially useful information� For backward strictness analysis our reference

points are �WH��� KHL���� For forward binding�time analysis we will be on more

solid ground� the choice will be that of Launchbury �Lau��a� which has been shown

to be of genuine practical use� For forward termination analysis we will use the same

domains as for backward strictness analysis since they appear to give potentially

useful information in that context as well�

CHAPTER �� FIRST	ORDER ANALYSIS ���

The abstraction of full projection domains to �nite abstract domains is performed

in two steps� For backward strictness analysis we �rst identify for each type T those

projections SProj T that have natural sequential interpretations in the sense described

in Section �����	 in essence this amounts to excluding projections on product domains

that cannot be expressed as products of projections on the component domains� From

each such set we choose a �nite subset FProj T� which amounts to restricting the

projection domains for Int and recursively�de�ned types� For backward strictness

analysis there are two reasons for performing abstraction in two steps� First� SProj T

appears to be the largest set from which we might reasonably choose a �nite subset for

analysing sequential languages�� Second� it will allow us to pin down more precisely

sources of inaccuracy�

For �xed type de�nitions D and each zero�order type T we de�ne SProj T to be the

domain PS�� �� T ��
PS��defns �� D ���� where P
S��
defns is de�ned in terms of PS�� just as Tdefns is

de�ned in terms of T � and PS�� is de�ned as follows�

PS�� �� �� �� � Proj �� � fBOT��BOT�g �

PS�� �� Int �� � Proj Int �

PS�� �� �T�� � � � �Tn� �� � f�� � � � �� �n j �i � PS�� �� Ti ��� � 	 i 	 ng �

PS�� �� c� T� � � � � � cn Tn ��

�
S
ff��� ��g j � �
�� � � � �� �n�� �i � PS�� �� Ti ��� � 	 i 	 ng �

The same set of projections would be de�ned for Int were Int de�ned as an in�nite

sum	 the set comprises the projections BOT�� Ni for all i � Z� and all possible lubs�

In Proj �T������Tn� the glb of two projections expressible as smash products is compo�

nentwise on their representation� e�g�
��� ���u
��� ��� �
�� u ����
�� u ���� and

glb in SProj T coincides with glb in Proj T for all T� The preceding also holds for & in

place of u� In contrast� in Proj �T������Tn� lub is not necessarily componentwise� even

when BOT� is excluded� To see this� consider

�� � ��� t
�� � ����
u� v�

�
smash �
�� � ��� � unsmash�
u� v� t

smash �
�� � ��� � unsmash�
u� v�

� smash
�� u� �� v� t smash
�� u� �� v� �

�This is assuming a sequential implementation without speculative evaluation� otherwise projec�
tions that correspond to parallel evaluation might be useful
 these could be conveniently be taken
to be the Hoare powerdomain of FProj T�

CHAPTER �� FIRST	ORDER ANALYSIS ���

If� for example� only �� maps its argument to �� then lub is not componentwise�

What�s more� in Proj �T������Tn� the lub of two projections expressible as smash products

may not be expressible as a smash product	 for example

ID� � ID�� t
ID� � ID�� �

which is ID� on pairs� cannot be expressed as a smash product� Since SProj �T������Tn�

only contains projections that can be expressed as smash products� lub in SProj T
will not in general be the same as lub in Proj T� and the former will not necessarily

be a sublattice of the latter� However
since glb does coincide�� for any � in Proj T

there is a least element of SProj T greater than �	 the lub of two elements of SProj T

is the least element greater than their lub in Proj T� and this lub is componentwise on

smash products other than BOT��
A helpful observation is that PS�� �� �T�� � � � �Tn� ��

is isomorphic to PS�� �� T� ��� � � �� PS�� �� Tn ��� the projection �� � � � �� �n is equal to

BOT� exactly when �i is BOT� for some i � If we identify all such expressions with

BOT� � � � �� BOT� then lub is componentwise�� Then SProj T is a complete lattice

for all T
this follows from the fact that glbs exist for all sets� including the empty set�

for which the glb is ID�� Further� SProj T always contains BOT�� BOT�� ID�� ID��

though these projections may not be distinct
e�g� for the unit type ��� or other types

with the same interpretation
up to isomorphism�� such as A given the type de�nition

A��A�A�
the same holds in Proj T��

For � � Proj T let �
� be the least projection in SProj T greater than �� For every projec�

tion transformer � � Proj T � Proj U de�ne �
� � SProj T � SProj U by �

� � �
� ���	

then � approximates �� at common arguments and �� is a safe abstraction of � � To

get a backward strictness semantics B�
� in these new domains
to which we will re�

fer generally as SProj � is simply a matter of replacing each projection transformer

j
conS���� j appearing in the de�nitions of the B� constants by its abstraction in the

new domains�

Proposition 	���

The abstraction % is a semi�homomorphism of the semantics� that is

EB� �� e �� ��� v EB
�
� �� e �� �� �

This follows from the fact that EB� is a monotonic function of its de�ning constants�

�

In other words� the B�
� semantics is a safe abstraction of the B� semantics�

We need to clarify the B�
� semantics for case expressions of product type� A pro�

jection in SProj �T������Tn� is lazy
above BOT�
when every component is lazy� and

CHAPTER �� FIRST	ORDER ANALYSIS ���

BOT� is BOT� � � � �� BOT�� The projection ID� is not in SProj �T������Tn� for n
 �	

in Proj �T������Tn� it is

ID� � ID� � ID� � � � �� ID��

t
ID� � ID� � ID� � � � �� ID��
���

t
ID� � � � �� ID� � ID� � ID�� �

For components of lifted type the projection corresponds to parallel evaluation of the

components until one of them reaches WHNF
for components of product type the

interpretation is applied recursively�� Its abstraction in SProj �T������Tn� is ID�� The

eager version of a lazy projection on products is

���� � � � ��
�n��� u ID�

�

���� �
���� � � � ��
�n���t

���� �
���� � � � ��
�n���t
���

���� �
���� � � � ��
�n��� �

The abstraction of the right�hand side to SProj �T������Tn� is just

���� � � � ��
�n����

To avoid this approximation we exploit distributivity� For lazy arguments the relevant

de�nitions may be expressed as follows�

chooseB
�
�
��� � � � � �n�

���� � � � ��
�n���

� BOT� t

F
��i�n
��
Ci BOT�� &

F
��j�n
�i �j ���� �

where �j �
���� � � � ��
�j���� �
�j �� �
�j���� � � � ��
�n���

The de�nitions of the other constants are textually the same except that B�
� every�

where replaces B�� The de�nition of tupleB
�
� can be simpli�ed to

tupleB
�
�
��� � � � � �n�
�� � � � �� �n� �
�� ��� & � � � &
�n �n� �

We repeat the last example in the abstract domains� Recall the expression e is

case b of

true �� �� x

false �� �� y �

Let �B
�
� be the identity function� so

�B
�
� �� b �� � ����
�� � ABS � ABS � �

�B
�
� �� x �� � ����
ABS � �� � ABS � �

�B
�
� �� y �� � ����
ABS � ABS � ��� �

as before� Then

EB
�
� �� e �� �B

�
�

CHAPTER �� FIRST	ORDER ANALYSIS ���

� ��� �

TRUE � ABS � ABS� &
ABS � �� � ABS ��

t

FALSE � ABS � ABS � &
ABS � ABS � ����

� ��� �
TRUE � �� � ABS � t
FALSE � ABS � ���

� ��� � STR � �� � �� �

This is a BSA of ES�� �� e ��� It reveals that in context �� that b is certain to be

evaluated� and that if x or y is evaluated then it is evaluated in context ��� Notice

this is weaker than before because of the approximation introduced by abstract lub�

Now let g � �
b� x � y��
b� x � x �� that is� a function from environments mapping the

x component into both the x and y positions� The least BSA �B
�
� of g� is

�
�b � �x � �y��
�b �
�x & �y�� ABS �� so that

�B
�
� �� b �� � ����
�� � ABS � ABS � �

�B
�
� �� x �� � ����
ABS � �� � ABS � �

�B
�
� �� y �� � ����
ABS � �� � ABS � �

as before� Then a BSA of ES�� �� e ���g� is EB
�
� �� e �� �B

�
� � which is ����
STR����ABS ��

indicating that in eager context ��� the x component of the argument of ES�� �� e ��� g�

is evaluated in context ��� In particular� this function is strict in the x component	 we

are still able to demonstrate that ES�� �� e �� is jointly strict in the x and y components

of its argument�

Inaccuracy has been introduced by the abstract lub operation of SProj � giving rise

to two seemingly contradictory facts� lifted functions are not in general determined

by their least BSAs in SProj � yet the abstract backward strictness semantics still

determines the standard semantics	 this is elaborated following�

Proposition 	���

If � is the least BSA of f� then �� may not determine f �

A simple counterexample is condS��� the abstraction of its least BSA is ����STR �

�� � ��� which is also the abstraction of the least BSA of the function like

condS�� with the roles of the second and third arguments reversed� that is�

condS�� �
�
x � y � z ��
x � z � y���� � �

Proposition 	���

For all v the projection transformer
ACCEPTv�
� determines v �

This follows from the fact that all characteristic projections are in SProj� �

CHAPTER �� FIRST	ORDER ANALYSIS ���

Proposition 	��	

For all zero�order expressions e� the function ES�� �� e �� is determined by EB
�
� �� e ���

This follows from Proposition ���� and the fact that the B�
� semantics maps charac�

teristic projection transformers to least characteristic projection transformers� that

is�

EB
�
� �� e ��
ACCEPT��

� �
ACCEPT
E
S�� �� e �� �

�� �

In turn� this follows from the fact that the abstract constants map characteristic

projection transformers to least characteristic projection transformers� for example

mkintB�i ��
ACCEPTv�
� �
mkintB�i ACCEPTv�

�� �

Example� Analysing the same expression again� let �S�� �
true� �� �� and �B
�
� �

ACCEPT
�S��

��� Then

�B
�
� �� b �� � ��� �

ACCEPTtrue�

� ���� ABS � ABS �
ACCEPTtrue�
� �

�B
�
� �� x �� � ��� � ABS �

ACCEPT��

� ���� ABS �
ACCEPT��
� �

�B
�
� �� y �� � ��� � ABS � ABS �

ACCEPT
�

� ��� �
ACCEPT
�
� �

and

EB��� e �� �B
�
�

� ��� �

ACCEPTtrue�
� TRUE �� ABS � ABS

& ABS �

ACCEPT��
� ���� ABS �

t

ACCEPTfalse�
� TRUE �� ABS � ABS

& ABS � ABS �

ACCEPT
�
� ����

� ��� � ABS �

ACCEPT��
� ���� ABS

�
ACCEPT��
� �

So� lifted functions are not in general determined by their least BSAs in SProj � but

the abstract B�
� semantics determines the S� semantics� This is possible because

EB
�
� �� e �� is not a projection transformer� but a function from projection transformers

to projection transformers� In contrast� the S� semantics is not determined by the

abstract �rst�order backward strictness semantics B�
� � as shown by the abstraction

of condS�� � What�s more� the B�
� semantics does not in general yield least abstract

BSAs� for example� for the identity de�ned by

id 	 Int
� Int

id x � cond �true ��� x� �� �

we have idB� STR � ID � This suggests that at �rst order the abstraction of functions

is not ideal�

CHAPTER �� FIRST	ORDER ANALYSIS ���

����� Second approach to �rst�order analysis

Following we describe our approach to �rst�order analysis taken in �DW����

One way of thinking about how information was lost in abstracting an expression to

a function is that function environments were constructed by evaluating the function

body in a single abstract environment� the identity� for example� we had

condB� � EB��� case b of ��� �� � �
����� �

We were able to determine the zero�order standard semantics from the B� semantics

by sampling at every abstract environment
ACCEPT��
�� Where we �went wrong�

is the peculiar N� semantics of function types� and the corresponding de�nition of

application as composition� Let the new N� semantics of �rst�order types instead be

such that N� application is ordinary application� so

T N��� T� �� T� ��

� T N��� T� �� � T N��� T� ��

�
T S� �� Egl �� � T S� �� T� ��� �
T S� �� Egl �� � T S� �� T� ��� �

and

T N�� �� T� �� T� ��

� T N���� T� �� � T N�� �� T� ��

�
T S�� �� Egl ��
sb
� T S�� �� T� ��� �
T S�� �� Egl ��

sb
� T S�� �� T� ��� �

Now the N� and N�� semantics of �rst�order functions will map functions of the

lifted� standard environment to functions of the
lifted� standard environment just

as do EN��� e �� and EN���� e ��� The required relation between the S� and N� semantics

at function types follows the same pattern� it is

RS�N� �� T� �� T� �� � �� � RS�N�
� �� T� �� � RS�N�

� �� T� �� �

and similarly for RS��N��
� �� T� �� T� ��� Then function environments
S� and
N� are

correctly related if for all function variables f and functions g we have
S��� f �� � g �

N��� f �� g� The semantics of �rst�order function application is ordinary application�

applyN� f x � f x �

and the same for applyN���

Least �xed point was used to give the S� semantics of function de�nitions	 the initial

approximation of each function is �x �� which is correctly related to the least value

�g ��x �� in the N� semantics� so

EN�

defns �� F �� � lfp
�
 �
EN��� e� ��
� � � � � EN��� en ��
�� �

CHAPTER �� FIRST	ORDER ANALYSIS ���

and the same for N��� It is not hard to show that the S� and N�
and S�� and N���

semantics are correctly related�

The de�nition of the corresponding �rst�order backward strictness semantics B� fol�

lows the same pattern� If an expression
in a given environment� denotes a projection

transformer� then a function variable should denote a function from projection trans�

formers to projection transformers� just as does EB� �� e ��� Thus

T B� �� T� �� T� �� � T B� �� T� �� � T B� �� T� ��

�
Proj T�
B
� Proj Egl � �
Proj T�

B
� Proj Egl � �

and

RN��B� �� T� �� T� �� � RN��B� �� T� �� � RN��B� �� T� �� �

and function application is ordinary application

applyB� f x � f x �

The required relation between N�� and B� �rst�order functions is the same as that

between EN�� �� e �� and EB��� e �� for e of type T� with environment type T�� Then

function environments
S�� �
N�� � and
B� are correctly related if
S�� is correctly

related to
N�� � and for all function symbols f and any � a BSA of any function g we

have that
B� �� f �� � is a BSA of
N�� �� f �� g and therefore of
S�� �� f �� � g�

Proposition 	���

The semantic functions EN�� and EB� are correctly related� �

Stability allows a stronger result� De�ne RNs
��
B� by

RNs
��
B� �� T� �� T� �� � RNs

��
B� �� T� �� � RNs

��
B� �� T� �� �

Proposition 	���

The functions EN���� e �� and EB� �� e �� are related by

RNs
��
B� �� T� �� U� �� � � � � � RNs

��
B� �� Tn �� Un ��� � RNs

��
B� �� E �� T ��

for all e
T with environment type E and function environments from

T B� �� T� �� U� �� � � � � � T B� �� Tn �� Un �� �

Better� EN�� �� e �� and EB��� e �� are related by
DLST � � � �� DLST � � DLST for all

e�

The proofs are the same as for Propositions ��� and ��� with an additional case for

the application form� �

CHAPTER �� FIRST	ORDER ANALYSIS ���

Last we de�ne EB�defns � For the N�� semantics of function de�nitions the initial approx�

imation of each function is the least value �g ��x �lift �	 the least BSA of �x �lift � is

����BOT�� and �������BOT� is the least value in T B� �� T� �� T� �� for all T� and T��

so the B� semantics of function de�nitions F is

EB�defns �� F �� � lfp
�
 �
EB� �� e� ��
� � � � � EB��� en ��
�� �

Proposition 	���

The N�� and B� semantics are correctly related� �

Again stability allows a stronger result�

Proposition 	���

For all F the environments EB�defns �� F �� and E
N��
defns �� F �� are related by DLST�� � ��DLST �

Proof

Given F let
B�i and
N�� be the approximations of the function environments arising

from the de�nitions� with limits
B� and
N�� respectively� Now
B�� is the least value

correctly related to
N��� � by Proposition ���� and induction
B�i is the least value

correctly related to
N��i � By inclusivity
B� is correctly related to
N��� Moreover�

B� is the least value correctly related to
N�� � this follows from Proposition ����� the

fact that lub for products is de�ned componentwise and lub for functions pointwise�

and Proposition ����� �

It is clear that the B� semantics determines the S� semantics� Again we could forgo

stability and retain leastness with respect to smash projections�

Example� Let condB� and condS�� be the functions denoted by the de�nition of

cond in the B� and S�� semantics� respectively� Then condB�
����� is the least BSA

of condS�� �

Just as we could restrict the projection transformers to those with the guard

property� so we may similarly restrict T B� �� T� �� T� �� to the distributive func�

tions� Further� it is easy to show that for all function de�nitions F that

EB�defns �� F ���� f ��
���ABS � � ���ABS and EB�defns �� F ���� f ��
����BOT�� � ����BOT�

for each f� and EB��� e ��
B�
���ABS � � ���ABS and EB��� e ��
B�
����BOT�� �

����BOT� for all e when
B� �� f ��
���ABS� � ���ABS and
B� �� f ��
����BOT�� �

����BOT� for each f� hence that we may further restrict T B� �� T� �� T� �� to those

functions that are strict and map ���ABS to ���ABS �

Abstraction to SProj to yield the abstract �rst�order semantics B�
� is induced in the

natural way� Then� for example� condB
�
� � EB

�
� �� rhs ��� where rhs is the right�hand

CHAPTER �� FIRST	ORDER ANALYSIS ���

side of the de�nition of cond� hence condB
�
� determines condS�� More generally� the

B
�
� semantics� unlike the B�

� semantics� determines the S� semantics� The proof that

EB
�
� determines ES� is the same as that for Proposition ���� with an additional case

for the application form� To show that E
B
�
�

defns determines ES�defns we need the facts that

% on projection transformers is continuous and that ACCEPTv is continuous in v�

����� Finite projection domains

For each type T we choose a �nite sublattice FProj T of SProj T suitable for examples

and implementation� Because of the treatment of recursively�de�ned types it is easier

to give the de�nition of FProj T as a set of deduction rules rather than as a composi�

tional semantics of types like PS�� � A projection � is in FProj T if � fproj T can be

inferred by the rules given following�

This is the sole instance in which it is not appropriate to treat Int as though it were

an in�nite sum� A correct treatment is given by regarding Int as though it were the

unary sum int Int�� For primitive unboxed types there are projections BOT� and

BOT�� so

BOT� fproj �� � BOT� fproj Int� �

BOT� fproj �� � BOT� fproj Int� �

The domains for product types are de�ned in terms of those of their component types

exactly as in the de�nition of PS�� � that is� there are all of the projections that can

be expressed as products of projections on the components�

�� fproj T� � � � �n fproj Tn

�� � � � � � �n fproj �T�� � � � �Tn�
�

The domains of projections for sum types are similarly induced by the component

types�

�� fproj T� � � � �n fproj Tn

�� � � � � � �n�� fproj c� T� � � � � � cn Tn
�

�� fproj T� � � � �n fproj Tn

�� � � � � � �n�� fproj c� T� � � � � � cn Tn
�

For recursively�de�ned types� roughly speaking� we choose only those projections

that act on each recursive instance of a data structure of the same type in the same

way� More precisely� given type de�nitions A� � T�	 � � � 	 An � Tn � which we will

CHAPTER �� FIRST	ORDER ANALYSIS ���

write Ai � Ti�A������An�� � 	 i 	 n� if by assuming �i fproj Ai for � 	 i 	 n we

may deduce Pi
��� � � � � �n� fproj Ti
A� � � � An� for � 	 i 	 n� then

�
��� � � � � �n��
P�
�BOT�t���� � � � � �BOT�t��n��
���

Pn
�BOT�t���� � � � � �BOT�t��n��

where each instance of �BOT�t� is optional� is a tuple
��� � � � � �n� of projections such

that �i fproj Ai for � 	 i 	 n�

It is a fact that FProj T is always a �nite sublattice of SProj T for all T and for boxed

types includes the projections BOT�� BOT�� ID�� ID��

In both approaches to �rst�order analysis� the non�standard value of each function

de�nition is a �rst�order strict distributive function� As previously mentioned� for

practical analysis this considerably reduces the sizes of the �nite abstract domains

and allows more compact representations of functions� There are additional bene�

�ts� Recall that given function de�nitions F� the non�standard function environments

EB�defns �� F �� and E
B�
defns �� F �� are de�ned to be limits of ascending chains f
B�i j i
 �g and

f
B�i j i
 �g� respectively� where the
B�i and
B�i are approximating function envi�

ronments� Nielson and Nielson �NN��� show that in this context� the least k such that

B�k �
B�k��
or
B�k �
B�k���� for all F of the same type� may be considerably smaller

than could be assumed if the projection transformers
or functions from projection

transformers to projection transformers� were assumed only to be monotonic�

Example� For Int the abstract projection domain FProj Int is comprises BOT��

BOT�� ID�� and ID�� The t�basis of the eager elements consists of the single ele�

ment ID�� There are� for example� four strict projection transformers from the eager

projections in FProj Int to FProj Int� all of which have the guard property and are

&�distributive�

Example� For type T not involving Int or recursion FProj T is the same as SProj T�

For example� for type Lift � summand �� the corresponding domain in the lifted

semantics is isomorphic to ��� with four projections BOT�� BOT�� ID�� and ID��

Example� For Bool we have

BOT� � BOT��� �
BOT� � BOT��� �

BOT� � BOT��� �
BOT� � BOT��� �

BOT� � BOT��� �
BOT� � BOT��� �

BOT� � BOT��� �
BOT� � BOT��� �

CHAPTER �� FIRST	ORDER ANALYSIS ���

Translating this into the constructor notation� these are FAIL� TRUE � FALSE � STR�

and their lazy counterparts� The t�basis of the eager projections comprises TRUE

and FALSE � There are ��� monotonic projection transformers from the eager pro�

jections in FProj Bool to FProj Bool
these are the ones with the weaker guard prop�

erty of �WH����� but only �� from the t�basis of the eager projections to FProj Bool�

all of which have the guard property� Since TRUE & FALSE � FAIL� and for

�� � � FProj Bool we have � & � � FAIL i� � � TRUE and � � FALSE or vice versa�

or one of � or � is FAIL� Thus there are �� &�distributive projection transform�

ers with the guard property
compared with �� monotonic functions from Bool to

Bool�� but they do not form a lattice� for example� there is no upper bound of the

projection transformers determined by fTRUE �� TRUE � FALSE �� FALSEg and

fTRUE �� FALSE � FALSE �� TRUEg�

Example� For IntList� each projection is de�ned by an expression of the form

����BOT�t�
�BOT�t�BOT� �
�� �BOT�t�����

where � ranges over FProj Int� This gives �� expressions denoting projections in

FProj IntList� but many of these are redundant� Using the constructor notation� de�ne

FIN � � ���NIL t CONS
�� �� �

INF � � ���CONS
��
ABS t ��� �

FINF � � ���NIL t CONS
��
ABS t ��� �

All of the eager projections in FProj IntList are of the form FIN �� INF �� or FINF �

for � in FProj Int� For � ranging over ABS � ID � and STR these give nine distinct

projections	 for FAIL we have FIN FAIL � INF FAIL � FAIL and FINF FAIL �

NIL� for a total of �� eager projections� Projections of the form FIN � demand �nite

lists� and demand � of each list element� Similarly� projections of the form INF �

demand partial or in�nite lists with at least one cons node� and � of each list element

for which the cons node is de�ned� Finally� those of the form FINF � demand �nite�

partial� or in�nite lists with at least one de�ned cons or nil node� and � of each

list element for which the cons node is de�ned� Here STR is FINF ID	 the eager

form of the projection encoding head strictness is FINF STR	 the eager form the the

projection encoding tail�strictness is FIN ABS � and the eager head�and�tail�strict

projection is FIN STR�

There is one set of expressions seemingly missing from the pattern� that is� those of the

form ���CONS
�� ��
those that demand in�nite lists� In fact� the value of such

expressions is FAIL� This is reasonable� intuitively� demanding full evaluation of an

in�nite list
before producing any of the list� is equivalent to divergence	 semantically�

CHAPTER �� FIRST	ORDER ANALYSIS ���

a function that maps in�nite lists to non�bottom values but maps partial lists to

bottom is not continuous�

In total there are �� projections in FProj IntList but the t�basis of the eager projections

comprises only �ve of these� namely

NIL �

FIN STR �

FIN ABS �

INF STR �

INF ABS �

There are ������ monotonic projection transformers from the eager projections other

than FAIL to FProj IntList
again� these are the ones with the weaker guard property

of �WH����� of which only ����� are distributive� that is� have the guard property�

Example� The elements of FProj IntListList are of the same form as those for

FProj IntList� except that � may be any element of FProj IntList� giving ��� projections

of which �� comprise the t�basis of the eager elements�

Example� Last we consider BoolTree� Each projection in FProj BoolTree is de�ned

by an expression of the form

����BOT�t�
��
�BOT�t�� � �BOT�t����� �

where � ranges over FProj Bool� All of the eager projections can be expressed by one

of the forms

FF � � �� �
LEAF �� t BRANCH
� � �� �

FI � � �� �
LEAF �� t BRANCH
� �
ABS t ��� �

IF � � �� �
LEAF �� t BRANCH

ABS t ��� �� �

II � � �� �
LEAF �� t BRANCH

ABS t ���
ABS t ��� �

for � ranging over FProj Bool� For � not equal to FAIL these give �� distinct

projections	 for FAIL we have FF FAIL � FI FAIL � IF FAIL � FAIL� but

II FAIL �� FAIL� Thus there are �� eager projections� of which the following ten

CHAPTER �� FIRST	ORDER ANALYSIS ���

comprise the t�basis of the eager elements�

II FAIL �

FF TRUE �

IF TRUE �

FI TRUE �

FF FALSE �

IF FALSE �

FI FALSE �

FF ABS �

IF ABS �

FI ABS �

The projections FF STR demands evaluation of the entire tree and all of the leaves	

the projection FF ABS demands evaluation of the entire branch and leaf structure

but none of the boolean values at the leaves� The projection FI STR corresponds to

evaluation required by a depth��rst search of the tree� left branch �rst� The projection

ABS t
II STR� encodes �leaf�value strictness�� when a leaf node is evaluated� so is

the associated boolean value�

These abstract domains are rather large� and in particular FProj IntList is larger than

the abstract domain proposed in �WH��� which does not contain projections of the

form INF � for � �� FAIL�
Note INF in �WH��� is FINF here�� One way to reduce

the sizes of the domains is to allow� other than FAIL� only those eager projections

that accept all nullary constructors� This would make the treatment of Int entirely

consistent with its de�nition as a sum type� the projections on Int would be the four

basic ones� and the same for Bool� For IntList the eager projections would be the

same as before� less INF STR� INF ABS � and INF ID � giving �� projections� still

including the four basic ones and the projections for head� tail� and head�and�tail

strictness� in both eager and lazy forms� the t�basis of the eager elements compris�

ing NIL� FIN STR� FIN ABS � FINF STR� and FINF ABS � There are ���� strict

monotonic projection transformers from the eager projections to the full ��� of which

���� have the guard property� The abstract projection domain for BoolTree would

then have �� instead of �� eager projections� of which the following seven would

CHAPTER �� FIRST	ORDER ANALYSIS ���

comprise the t�basis�

II FAIL �

FF STR �

FI STR �

IF STR �

FF ABS �

FI ABS �

IF ABS �

Next we give some examples of analysis in FProj � using the second approach to

�rst�order analysis�

Example� The function sum to produce the sum of an integer list is de�ned by

sum 	 IntList
� Int

sum xs � case xs of

nil �� �� �

cons �y�ys� �� y
 sum ys �

The generic semantics is

sum xs � choose
sel� xs�

mkint� xs�

plus

sel� � outcons � sel�� xs�

apply sum

sel� � outcons � sel�� xs��� �

Then sumB�
����� is determined by the mapping STR �� FIN ID � This is clearly

not optimal� since the least BSA of sumS�� is determined by STR �� FIN STR� the

result given by Wadler and Hughes� analysis�

Example� The function or is boolean or 	 it examines its second argument only if

the �rst is false�

or 	 �Bool�Bool�
� Bool

or �x�y� � case x of

true �� �� true ��

false �� �� y �

The function dfs returns the boolean or of all of the leaves of its argument tree�

dfs 	 BoolTree
� Bool

dfs t � case t of

leaf b �� b

branch �l�r� �� or �dfs l� dfs r�

CHAPTER �� FIRST	ORDER ANALYSIS ���

Then orB�
����� is determined by the mappings

TRUE �� STR �
TRUE t ABS � �

FALSE �� FALSE � FALSE �

which is optimal� so STR ��
STR � ID�� Then dfsB�
����� is determined by the

mappings

TRUE �� II STR �

FALSE �� II FALSE �

This too is suboptimal� the least BSA of dfsS�� is determined by

TRUE �� FI STR �

FALSE �� FF FALSE �

Example�

interleave 	 �IntList�IntList�
� IntList

interleave �xs�ys�

� case xs of

nil �� ��

nil ��

cons �z�zs� ��

case ys of

nil �� �� nil ��

cons �t�ts� �� cons �z� cons �t� interleave �zs�ts���

We seek the strictness properties of interleaveS�� �
�x �
x � x ���� that is� how

interleaveS�� behaves when its arguments are the same� The least BSA � of

�x �
x � x ��� is �
�� ���
�& ��� and interleaveB� � is determined by the mappings

NIL �� NIL �

FIN STR �� FIN ID �

FIN ABS �� FIN ABS �

INF STR �� INF ID �

INF ABS �� INF ABS �

This is suboptimal at arguments FIN STR and INF STR� for which FIN STR and

INF STR would be optimal results�

In brief� we have de�ned a perfect backward�strictness semantics� abstracted to �nite

domains in a straightforward way� giving an analysis technique that in some cases is

worse than Wadler and Hughes�� Following� we show how to improve our technique

to give results strictly better than theirs�

CHAPTER �� FIRST	ORDER ANALYSIS ���

����� More on case expressions

When working in the full projection domains the B�
and B�� semantics give strictly

better results than that of �WH���� and we conjecture that the same holds when

working in SProj � However� when working in FProj the results of the two methods

become incomparable� it is because of the non�standard semantics of case expres�

sions that the technique of �WH��� can give better results� In this section we derive

an analog of the semantics of case expressions given in �WH��� and give examples

showing how it can give results better� worse� and incomparable to our method� Since

least BSAs always exist in the domains with which we are working we may safely de�

�ne the semantics to be the glb of the results of these two methods� yielding results

strictly better than either�

We use an inequality to transform our semantics of case expressions to an analog

of the semantics given in �WH���� First we extend the de�nition of & to projec�

tion transformers� �� & �� is de�ned to be the projection transformer with the guard

property that agrees with ���
�� �� &
�� �� on the eager lub�basis of its argument

domain
this is smaller than de�ning & on projection transformers pointwise since

the result may not be distributive��

Proposition 	��

For all e� ��� and ���

EB��� e ��
�� & ��� v
EB� �� e �� ��� &
EB��� e �� ��� �

Sketch Proof

The proof is by induction on the structure of expressions using the de�nitions of

the B� constants� For each constant we need to show the corresponding result� for

example� for chooseB� we show

chooseB�
�� & ��
�� �� & ��

�� �� & ��
��

v chooseB�
��� ��� ��� & chooseB�
��
�� ��

�� ��
�� �

Let �� be an eager element of the lub�basis of its domain� ���� � ��
C� ABS ��

���� � � ��
C� ABS�� ���� � ��
C� ABS �� ���� � � ��
C� ABS �� �� � �� ��� �� � � �� ���

�� � �� ��� and �� � � �� ��� Then

chooseB�
�� & ��
�� �� & ��

�� �� & ��
�� ��

�
���� & ���� & �� & ��� t
���� & ���� & �� & ���

v

���� & ��� t
���� & ���� &

���� & ��� t
���� & ����

�
chooseB�
��� ��� ��� & chooseB�
��
�� ��

�� ��
��� �� �

as required� �

CHAPTER �� FIRST	ORDER ANALYSIS ���

This allows us to split the information in the environment� giving for example

EB��� e �� �x� �� ��� x� �� ��� x� �� ���

v
 EB��� e �� �x� �� ��� x� �� ���ABS � x� �� ���ABS �

& EB��� e �� �x� �� ���ABS � x� �� ��� x� �� ���� �

for all e� ��� ��� and ��� since ���ABS is the identity for &� Intuitively� the &

operation has been pulled from the �inside� on the left�hand side to the �outside� on

the right�hand side� �unrelationalising�� and thereby weakening� the analysis�

Proposition 	���

For all expressions e and projection transformers �� and ���

EB� �� e ��
�� �B ��� �
EB��� e �� ��� �B �� �

and as a special case� EB��� e �� � � � �
EB��� e ��
�������

This follows from the de�nition of �B and the fact that EB� �� e �� � is equal to

j ES�� �� e �� j �B � � �

More generally� for each B� constant conB� we have conB�
�� �B �� � � � � �n �B �� �

conB�
��� � � � � �n� �
B � � from which the last result could also be shown�

We now proceed with the transformation� From the de�nition of chooseB� we have

EB� �� case e� of c� x� �� e�	 � � � 	 cn xn �� en �� � ��

�
F
��i�n
��
Ci ABS � & EB� �� ei �� ��xi �� outcB�i ��� ���

where �� � EB� �� e� �� � �

Let us consider just the i th subterm on the right�hand side� that is

��
Ci ABS �� &
EB� �� ei �� ��xi �� outcB�i ��� ��� �

By Proposition ���� this approximates

��
Ci ABS �

& EB� �� ei ��
���ABS ��xi �� outcB�i ��� ��

& EB� �� ei �� ��xi �� ���ABS � �� �

We want to concentrate on the subterm

��
Ci ABS �

& EB� �� ei ��
���ABS ��xi �� outcB�i ��� �� �

Assume that environments for ei are m�tuples with the value of xi in the i th position�

Then

���ABS��xi �� outcB�i ���

� tupleB�
���ABS � � � � � ���ABS � outcB�i ��� ���ABS � ���ABS�

�
outcB�i ��� � tupleB�
���ABS � � � � � ���ABS � ����� ���ABS � ���ABS �

�
outcB�i ��� �

���ABS ��xi �� ������ �

CHAPTER �� FIRST	ORDER ANALYSIS ���

so

EB� �� ei ��
���ABS ��xi �� outcB�i ���

� EB� �� ei ��
outc
B�
i ��� �

���ABS ��xi �� ������

�
outcB�i ��� � E
B� �� ei ��

���ABS ��xi �� ������ �

Let OUTCi be the least BSA of outcS��i � then OUTCi agrees with Ci for ea�

ger arguments� Let � � EB� �� ei ��
���ABS��xi �� ����� ��� Now outcB�i �� � is

��
OUTCi ��� and we need to simplify

��
Ci ABS �� &
��
OUTCi ��� �

Let us assume that � is the least BSA of some stable function� so �� and outcB�i ��

are the least BSAs of some stable functions� hence have the guard property and are

&�distributive
this will be relaxed shortly�� Then the last expression becomes

��

Ci ABS � &
OUTCi ��� �

If � is of the form �� then OUTCi � � Ci �� and in general
Ci ��� &
Ci ��� �

Ci
�� & ���� so the expression simpli�es to ��
Ci ��� If � is of the form �� then

OUTCi �� � ABS t
Ci ���� and

Ci ABS � &
ABS t
Ci ����

�
Ci ABS � t
Ci ���

� Ci �� �

since in general
Ci ��� t
Ci ��� � Ci
�� t ���� In either case the expression simpli�

�es to ��
Ci ��� Putting this all together gives a new backward strictness semantics

for case expressions�

EB
�

��� case e� of c� x� �� e�	 � � � 	 cn xn �� en �� �

� ��� �
F
��i�n
 EB��� e� �� �
Ci
EB� �� ei ��
���ABS ��xi �� ����� ����

& EB��� ei �� ��xi �� ���ABS � ��� �

This is the analog of the semantics for case given in �WH���� The new semantics is

correct for � the least BSA of a stable function	 since every projection transformer

with guard property is the lub of the least BSAs of some set of stable functions� both

semantics are monotonic� and the �rst is distributive� it must be that this semantics

safely approximations the �rst� We conjecture that the same holds in SProj � but in

FProj the two semantics are incomparable� the second may produce better results

than the �rst when recursive types are involved� We give two examples� one in which

the �rst semantics is better� and one in which the second is better� Pairing the

expressions from the two examples gives an expression for which the two semantics

give incomparable results�

CHAPTER �� FIRST	ORDER ANALYSIS ���

Let SimpleSum � single Int� and variables b
Bool and x
Int� The expression to

be analysed is

case �single x� of

single y �� cond �b�x�y� �

where cond �b�x�y� is shorthand for a case expression� Let the environment for

this expression have type �Bool�SimpleSum�� In the full projection domains both

backward strictness semantics give

EB� �� e ��
����� � ����STR � �� �

as expected� The �rst semantics gives the same result in SProj but the second gives

a poorer result� We have

EB��� e ��
�����

� ���� EB� �� single x ��
�����
SINGLE
� ���

& EB� �� cond �b�x�y� ��
������y �� ���ABS �

� ����

TRUE � ABS � t
FALSE � ���

&

TRUE � �� t
FALSE � ABS ���

where � � EB� �� cond �b�x�y� ��
���ABS ��y �� ������ In the full projection domains

this simpli�es to ����STR � ��� but in SProj it is ����STR � ���

Next we consider an example for which the second semantics is better� Let

xs
IntList and the environment contain a single entry for xs� The expression e

to be analysed is

case xs of

nil �� �� nil ��

cons �z�zs� �� cons �z�zs� �

Then ES��� e �� is the identity� Performing the calculations in FProj the second seman�

tics gives

EB� �� e ��
����� � ����

as expected� The calculations for the �rst semantics are sketched following�

EB��� e ��
�����

� ����
 EB� �� xs ��
����� NIL

& EB� �� nil �� ��
����� ���

t
 EB� �� xs ��
�����
CONS ABS �

& EB� �� let ��� ��
������ys �� outconsB�
EB��� xs ��
������� ���

CHAPTER �� FIRST	ORDER ANALYSIS ���

� ����
 NIL

& ACCEPTB�
nil ���

t
 CONS ABS

& EB� �� let ��� ��
������ys �� outconsB�
������ ���

Now

EB��� let ��� ��
������ys �� outconsB�
������ �

� EB��� cons �z�zs� �� �xs �� �����

z �� selB��
outconsB�
�������

zs �� selB��
outconsB�
��������

The projection transformer selB��
outconsB�
������ is the least BSA of selS��� �

outconsS��� and is equal to

��� � CONS
�� � ABS � �

and selB��
outconsB�
������ is

��� � CONS
ABS � ��� �

In FProj the approximation of these projection transformers is poor� The �rst is

determined by

STR �� INF STR �

and the second by

NIL �� FAIL �

FIN STR �� FIN ID �

FIN ABS �� FIN ABS �

INF STR �� INF ID �

INF ABS �� INF ABS �

Then EB��� cons �z�zs� �� �� � �� is determined by

NIL �� FAIL �

FIN STR �� INF STR & FIN ID � FIN ID �

FIN ABS �� ABS & FIN ABS � FIN ABS �

INF STR �� INF STR & INF ID � INF ID �

INF ABS �� ABS & INF ABS � INF ABS �

Putting this together we have EB��� e ��
����� is determined by the same mappings�

except that NIL �� NIL� In particular� for arguments FIN STR and INF STR accu�

racy has been lost�

CHAPTER �� FIRST	ORDER ANALYSIS ���

Since least BSAs always exist� we may safely combine these two semantics by taking

their glb� yielding a semantics strictly better than either� In fact� the glb may be

safely taken branch�wise between the two semantics� yielding

EB
��

� �� case e� of c� x� �� e�	 � � � 	 cn xn �� en �� � ��

�
F
��i�n

 EB

��

� �� e� �� �
Ci
EB
��

� �� ei ��
���ABS��xi �� ����� ����

& EB
��

� �� ei �� ��xi �� ���ABS � ���

u
 EB
��

� �� e� �� �
Ci ABS �

& EB
��

� �� ei �� ��xi �� outcB�i ��� ���� �

This is better than simply taking the new semantics of case to be the lub of the �rst

two� that is�

EB��� case e� of c� x� �� e�	 � � � 	 cn xn �� en ��

u EB
�

��� case e� of c� x� �� e�	 � � � 	 cn xn �� en ���

since in general in a lattice
u� u u�� t
v� u v�� v
u� t v�� u
u� t v���

We repeat the examples involving sum� dfs� and interleave using the new semantics�

Example� Now sumB���
����� is determined by the mapping STR �� FIN STR�

which is optimal�

Example� Now dfsB
��

�
����� is determined by the mappings

TRUE �� FI STR �

FALSE �� FF FALSE �

which is optimal�

Example� The result for interleave does not improve�

We make an observation regarding program transformation� If a case expression is

transformed from

case e� of c� x� �� e�	 � � � 	 cn xn �� en

to

case e� of c� x� �� e��outc� e��x��	 � � � 	 cn xn �� en �outcn e��xn � �

before analysis� where outci denotes the usual projection from the sum type� then

the second case semantics of the transformed expression is the same as the �rst case

semantics of both the original and transformed expressions� This follows from the

CHAPTER �� FIRST	ORDER ANALYSIS ���

facts that EB��� e ��
���ABS� is ���ABS for all e in both semantics� e��outci e��xi �

has no free occurrences of xi � and that the substitution lemma holds for the �rst

semantics
in FProj �� that is� EB� �� e �� ��x �� EB� �� e� �� �� is equal to EB��� e�e��x� �� �

for all e and e�
assuming no variable capture�� Thus such a transformation would

nullify the bene�t of combining the case semantics� This also demonstrates that the

substitution lemma does not hold for the second or combined semantics in FProj �

Before going on it is worth taking one last look at the transformation� In essence� we

started with

EB��� e� �� �
Ci ABS �

& EB��� ei �� ��xi �� outcB�i ��� �� �

and transformed to

EB
�

��� e� �� �
Ci
EB
�

� �� ei ��
���ABS ��xi �� ����� ����

& EB
�
��� ei �� ��xi �� ���ABS � �� �

This may be thought of as �unrelationalising� the analysis with respect to variable

xi � which as shown can improve analysis in FProj by avoiding bad approximations

to certain projection transformers� A natural question is whether this process can be

carried any further� and if so� with any bene�ts� In other words� can the binding for

not just xi be �moved� from the environment of the second instance of EB� �� ei �� to the

�rst� but all of the bindings so moved� yielding� for some ��

EB
�

��� e� �� �
Ci
EB
�

� �� ei �� �
� ����

& EB
�

��� ei �� �xi �� ���ABS j � 	 i 	 n� �� �

which would then be equal to just

EB
�

��� e� �� �
Ci
EB
�

� �� ei �� �
� ���� �

The answer to both questions appears to be a�rmative� but we leave this interesting

topic for further research�

����	 More on Wadler and Hughes
 technique

Roughly speaking� the basic abstract values in Wadler and Hughes� analysis are pro�

jections� and in ours they are projection transformers� The di�erence is re�ected in

the semantics that are abstracted� for theirs� the S�� semantics in which basic values

are just
lifted� values	 for ours� the N�� semantics in which basic values are functions

from
lifted� values to
lifted� values� At zero�order their semantics shows how pro�

jections propagate through values� while ours gives BSAs of functions� This di�erence

is more than just notational as the following comparison of the treatment of products

shows�

CHAPTER �� FIRST	ORDER ANALYSIS ���

It has been observed that projections on
smash� product domains cannot in general

be represented by
smash� products of projections and hence there is an inherent loss

of accuracy in backward analysis of products� wherein a projection on products must

be
over�� approximated by a product of projections� that is� given � � jU � V j we

choose a
preferably least� product �� � �� such that �
u� v� v smash
�� u� �� v�

for all u and v � This loss of accuracy in inherent in the analysis technique given

in �WH���
in the semantics of cons�� Our method avoids this approximation by

working at the level of projection transformers� given expression �e��e��� in the N��

semantics e� and e� denote functions f� and f� and the expression denotes hhf�� f�ii�

and from least BSAs of f� and f� we may obtain a least BSA of hhf�� f�ii� Another

way to see this is to observe that tupleB�
selB�� �� selB�� �� is equal to � � It is only

in abstracting to SProj that such approximations are introduced into our analyses�

This di�erence also manifests itself at �rst�order� where their abstract functions are

projection transformers� and ours are functions from projection transformers to pro�

jection transformers�

Another di�erence in the analysis techniques is that theirs is manifestly backward

projections clearly propagate backward� Ours is less easy to classify� the semantics

is forward
projection transformers propagate forward� but basic values are BSAs

which give �backward� information� This is most clear where variables are bound� in

function abstraction and let and case expressions�

There are at least three senses in which our analysis technique is relational where

Wadler and Hughes� is not� The �rst is the result of manipulating projection trans�

formers instead of projections as just described� Second is in the semantics of case

expressions as discussed� Third is in the treatment of functions of more than one

argument� our analysis technique
using the �rst approach to �rst�order analysis�

assigns to each function a single projection transformer	 theirs assigns one for each

argument and the result is their combination with &� We give an analog of their

approach in our framework� For binary function f with non�standard value f B� the

two functions would be

f ��	 � ���
selB�� f B� ��� ABS �

f ��	 � ���ABS �
selB�� f B� �� �

then f ��	 & f ��	 w f B� � One manifestation of our analysis technique being more re�

lational than theirs was highlighted in the abstraction to SProj where our analysis

of cond could detect joint strictness in the second and third arguments� while theirs

could not� As shown in �DW���� by �un�relationalising� our technique in this way� the

improvement in computational complexity gained by considering abstract arguments

CHAPTER �� FIRST	ORDER ANALYSIS ���

independently
as also described by Hughes �Hug��a�� can be realised�

��
 Binding�time Analysis

The nominal goal of binding�time analysis is� given f � to determine as large a � as

possible such that
� �� � f v f � � for all �	 in terms of
zero�order� expression

semantics� given e� to determine � such that
� �� � ES� �� e �� v ES� �� e �� � � for all ��

The development of the zero�order binding�time analysis semantics F� parallels that

of the B� semantics	 because we are interested in abstractions of functions from the

standard rather than lifted semantics we take the N� semantics rather than the N��

semantics as the starting point� Since in general a function is not determined by its

greatest FSA� and abstract composition does not preserve greatestness� there are no

strong results corresponding to those for the backward strictness semantics� the F�

semantics will neither yield greatest FSAs nor determine the S� semantics�

The binding�time semantics is essentially the same as Launchbury�s �Lau��a� if we

take
the analog of� the �rst approach to �rst�order analysis described for strictness

analysis� that is� abstract the N� rather than the N� semantics	 our contribution

here is its development from �rst principles in the same setting as the other analysis

techniques� and in such a way as to facilitate the development of the semantics for

higher�order binding�time analysis given in Chapter ��

We require that if �F� is a FSA of �N� then EF��� e �� �F� be a FSA of EN��� e �� �N� and

therefore of ES� �� e �� � �N� 	 in particular when �N� is the identity its greatest FSA is

the identity ���� and EF��� e ��
����� is a FSA of ES� �� e ���

We intend all FSAs � to map ID to ID and be u�distributive and so use the func�

tion space constructor
F
� to build the domains of FSAs of functions in T N� �� T �� and

T N��� T ��� In the context of binding�time analysis we take Proj T to be j T S� �� T �� j and

j f j to be the greatest FSA of f �

Let Egl be the type of global environments� then

T F� �� T �� � Proj Egl
F
� Proj T �

For e
T with environment type E we have EF��� e �� � T F� �� E ��� T F� �� T ��� so

EF� �� e �� �
Proj Egl
F
� Proj E� �
Proj Egl

F
� Proj T� �

so EF��� e �� is a function from projection transformers to projection transformers�

CHAPTER �� FIRST	ORDER ANALYSIS ���

The type predicate between values g and � in the N� and F� semantics requires that

� be a FSA of g� that is�

RN�F� �� T ��
g � �� � �� �
� �� � g v g � � �

Recall that each N� constant conN� is de�ned by

conN�
g�� � � � � gn� � conS� � hg�� � � � � gni �

If �i is a
greatest� FSA of gi for � 	 i 	 n then ���

�� ��� � � ��
�n ��� is a
great�

est� FSA of hg�� � � � � gni	 abstract composition is ordinary composition	 hence each F�

constant is de�ned by

conF�
��� � � � � �n� � j conS� j � ���

�� ��� � � ��
�n ��� �

When the constant has a single argument this simpli�es to conF� � � j conS� j � � �

The detailed de�nitions are given following�

The greatest FSA of every constant function is ���ID� so

mkunitF� � �
���ID� � � �

mkintF�i � �
���ID� � � �

The other unary constants are de�ned similarly� The greatest FSA of selS�i is

j selS�i j � jT� � � � �� Tn j
F
� jTi j �

j selS�i j � �
F
f�i j �� � � � �� �n v �g �

The greatest FSA of incS�i � ini � lift is j incS�i j � j ini j � j lift j� where the greatest

FSAs of ini and lift are

j ini j � jTi j
F
� jT� � � � �� Tn j �

j ini j � � ID � � � �� ID � �� ID � � � �� ID �

where � appears in the i th position on the right�hand side� and

j lift j � jT j
F
� jT� j �

j lift j � � �� �

so

j incS�i j � jTi j
F
� j
T��� � � � ��
Tn�� j �

j incS�i j � � ID� � � � �� ID� � �� � ID� � � � �� ID� �

The greatest FSA of outcS�i � drop � outi is j outcS�i j � j drop j � j outi j� where the

greatest FSAs of drop and outi are

j drop j � jT� j
F
� jT j �

j drop j � � drop � � � lift �

CHAPTER �� FIRST	ORDER ANALYSIS ���

so j drop j �� � j drop j �� � �� and

j outi j � jT� � � � �� Tn j
F
� jT j �

j outi j
�� � � � �� �n� � �i �

Then

j outcS�i j � j
T��� � � � ��
Tn�� j
F
� jTi j �

j outcS�i j
�� � � � �� �n� � drop � �i � lift �

Given �� to satisfy � � plusS� v plusS� � �� for every pair
lift i� lift j� on which �

does not act as the identity � must map lift
i " j � to �� Recall that ni is the least

projection that acts as the identity on lift i � The greatest FSA of plusS� is

j plusS� j � �
F
i 	�S ni � where S � fi " j j ��lift i� lift j 	 �v �g �

Composition and simpli�cation gives

plusF�
��� ��� � � ID � if �� � � ID and �� � � ID �

BOT � otherwise �

Since tupleS� is the identity we have

tupleF�
��� � � � � �n� � �
�� ��� � � ��
�n �� �

We will not attempt to give a detailed de�nition of the greatest FSA of chooseS�

at arbitrary arguments
as we did for plusS�� since the semantics only gives rise to

arguments of the form �� � � � �� �n �

j chooseS� j
�� � � � �� �n� � BOT � if �� �w
F
��i�n
ci BOT � �

j j��i�n �i � otherwise �

Thus

chooseF�
��� � � � � �n� � � BOT � if
�� �� �w

F
��i�n ci BOT � �

j j��i�n �i �� otherwise �

Proposition 	���

The semantic functions EN� and EF� are correctly related� �

In the context of forward strictness abstraction we will write CON to denote the

greatest FSA of S� constant conS� �

Example� Let e stand for the the body of the boolean or function� that is�

case x of

true �� �� true ��

false �� �� y

CHAPTER �� FIRST	ORDER ANALYSIS ���

with environment type �Bool�Bool� with the �rst component corresponding to vari�

able x and the second to y� The generic semantics E �� e �� is

�x � choose
sel� x �
intrue �mkunit� x � sel� x � �

Let �F� be the identity� the greatest FSA of the identity� then we have selF�i id �

SELi � id � SELi � Also
intrueF� �mkunitF�� id �
���ID� �
���ID� � id � ���ID�

so

EF��� e �� �F� � chooseF�
SEL�� ���ID � SEL�� �

which maps ID � ID to ID and every other projection to BOT � This is not optimal

since false � ES��� e �� v ES��� e �� �
false � false�� One reason for this lack of accuracy

is that functions are not determined by their greatest FSAs	 here ���ID is not just

the greatest FSA of the constant true function but of every constant function�

����� First�order analysis

We develop the analog of the �rst approach to �rst�order analysis given for strictness

analysis� The value denoted by a function symbol f in the �rst�order forward binding�

time semantics F� is to be a FSA of the value it denotes in the S� semantics	 the desired

result is obtained by abstracting the N� semantics� The F� semantics of �rst�order

types is then

T F� �� T� �� T� �� � Proj T�
F
� Proj T� �

The required relation at function types is �is a FSA of�� so

RN�F� �� T� �� T� ��
g � �� � � � �
� �� � g v g � � �

Thus if
S� and
F� are function environments such that
F��� f �� is a FSA of
S� �� f �� for

each f� and �F� is a FSA of �N� � then EF��� e ��
F� �F� is a FSA of
EN��� e ��
S�� �N� �

and hence of
ES��� e ��
S�� � �N� � In particular� when �N� is the identity its greatest

FSA is the identity ����� and EF��� e ��
F�
����� is a FSA of ES��� e ��
S� �

Application in F� is abstract
ordinary� composition�

applyF� �� �� � �� � �� �

and applyN� and applyF� are correctly related�

Proposition 	���

The semantic functions EN� and EF� are correctly related� �

CHAPTER �� FIRST	ORDER ANALYSIS ���

Next we give the semantics of a set of �rst�order function de�nitions� As before let

N�

i be the i th approximation of the N� semantics EN�

defns �� F �� of function de�nitions F�

Then
N�

i �� f �� � �x��� which has greatest FSA ���ID� for all f� Let

F�i �
�
 �
EF� �� e� ��

������ � � � � EF��� en ��

�������i
F��

where

F�� �
���ID� � � � � ���ID� �

By Proposition ���� and induction
F�i �� f �� is a FSA of
S�i �� f �� for all i and f� The

N�

i form an ascending chain with a limit
N�� but the
F�i form a descending chain

since ���ID is the greatest projection transformer� We take the limit
F� of the latter

chain to be its glb� so

EF�defns �� F �� � gfp
�
 �
EF��� e� ��

������ � � � � EF��� en ��

������� �

where gfp denotes greatest �xed point� Further�
F� maps each function variable f

to a FSA of the standard value
N� �� f �� for all f	 this follows from inclusivity of the

safety condition� and the fact that
F� �� f �� is a FSA of
N�

i �� f �� for all i since the
F�i

are decreasing�

Proposition 	���

The F� and N� semantics are correctly related� �

Example� Recall the de�nition of the boolean or function�

or 	 �Bool�Bool�
� Bool

or �x�y� � case x of

true �� �� true ��

false �� �� y

Then orF� is maps ID � ID to ID and all other projections to BOT �

Example� De�ne the length function for integer lists as follows�

length 	 IntList
� IntList

length xs � case xs of

nil �� �� �

cons �z�zs� �� �
 length zs

De�ne SPINE by

SPINE � � ���ID� �
�� ���

� ���nil t
cons
�� ��� �

Then SPINE ID � ID� The projection SPINE BOT acts as the identity on the

spines
cons and nil nodes� of all lists but maps all heads to �� specifying static

spines and dynamic elements� The greatest FSA of the standard denotation sumS�

CHAPTER �� FIRST	ORDER ANALYSIS ���

of sum maps SPINE ID to ID and all other projections to BOT � and the greatest

FSA of lengthS� maps SPINE BOT and all greater projections to ID � and all other

projections to BOT � The interesting point is that there are no projections that

specify that a list is of a certain �xed length� for example nil does not specify a

static list of zero length� but that if a list is of zero length then it is static� Hence the

greatest FSAs of sumS� and lengthS� are not continuous� Analysis of the two function

de�nitions gives optimal results� for example� the generic semantics of length is

length � �x � choose
x �

mkint� x �

plus
mkint� x � apply length

sel� � outcons� x ��� �

so lengthF� is the greatest �xed point of

�� � chooseF�
����� ���ID� � � SEL� �OUTCONS � �

which maps SPINE BOT and all greater projections to ID� and all other projections

to BOT � so lengthF� is optimal� Analysis of sum is also optimal
it couldn�t be

otherwise since the optimal value is the least value in the relevant domain��

Example� De�ne the tail function for lists by

tl 	 IntList
� IntList

tl xs � case xs of

nil �� �� tl xs

cons �y�ys� �� ys

Then the greatest FSA of tlS� is determined by the mappings

nil �� BOT

cons � �� �

nil t
cons �� �� �

but the result of analysis is suboptimal� tlF� maps projections of the form

nil t
cons �� to �� but those of the form cons � to BOT �

The second approach to �rst�order analysis
abstraction of the N� semantics
is anal�

ogous to that for backward strictness analysis� Since we have no examples to contrast

the two approaches� and since the second is a specialisation of the higher�order tech�

nique developed later� we omit the details�

����� Abstraction of projection domains

The de�nition of chooseF� shows that if the projection on the value of a selector

in a case expression does not encode staticness in all constructors� that is� is not

CHAPTER �� FIRST	ORDER ANALYSIS ���

greater than t��i�n ci BOT for selector of type c� T� � � � � � cn Tn � the projection

on the result of the case expression is BOT 	 this is one way of explaining the loss of

accuracy in the last example� This is consistent with the de�nition of plusS� if Int

is regarded as an in�nite sum and e� � e� as being de�ned by nested case expres�

sions� Another revealing observation is that decomposition of products e�ectively

approximates each projection on a product domain by the greatest approximating

projection expressible as a product of projections on the component domains	 unlike

the analogous situation for backward strictness abstraction tupleF�
selF�� �� selF�� ��

may strictly approximate � � Excluding those projections on products that cannot

be expressed as products of projections� and those projections on sums
other than

BOT � that do not encode staticness in all constructors� would arguably leave the

largest set of projections from which we might reasonably choose a �nite subset for

implementation�

As before� abstraction of full projection domains to �nite domains will be performed

in two steps� For each type T the domain SProj T will be the full domain of projec�

tions less those just described� Abstraction to �nite domains requires only restricting

projections for recursively�de�ned types� Our particular choice of �nite projection

domains will be the same as Launchbury�s �Lau��a��

For �xed type de�nitions D and each zero�order type T de�ne SProj T to be

PS� �� T ��
PS�defns �� D ��� with P
S� de�ned as follows�

PS� �� �� �� � j T S� �� �� �� j � j � j � fIDg �

PS� �� �T�� � � � �Tn� �� � f�� � � � �� �n j �i � PS� �� Ti ��� � 	 i 	 ng �

PS� �� c� T� � � � � � cn Tn ��

� fBOTg � f
c� �i� t � � � t
cn �n� j �i � PS� �� Ti ��� � 	 i 	 ng �

Here it does not matter whether we regard Int as de�ned by an in�nite sum or by

int Int�� but formally we take the former view since we have no theory of projections

on unpointed domains�

PS� �� Int �� � fBOT � IDg �

For all T the domain SProj T is a complete sublattice of Proj T containing ID and BOT

though they may not be distinct��

For � � Proj T let �
� be the greatest projection in SProj T less than �� For every projec�

tion transformer � � Proj T � Proj U de�ne �
� � SProj T � SProj U by �

� � �
� ���	

then �� is less than � at common arguments and �� is a safe abstraction of � � To

get an abstract semantics F�� in SProj is simply a matter of replacing each projection

CHAPTER �� FIRST	ORDER ANALYSIS ���

transformer j conS� j appearing in the de�nitions of the F� constants by its abstraction

in the new domains�

Proposition 	��	

The F�� semantics safely abstracts the F� semantics� that is

EF� �� e �� ��� w EF
�
� �� e �� �� �

�

Abstraction of both versions of the �rst�order semantics is induced in the natural way�

and the corresponding safety results hold� The results of analysis of or� sum� length�

and tl in SProj are as before�

����� Finite projection domains

For each type T we choose a �nite sublattice FProj T of SProj T suitable for exam�

ples and implementation� As before FProj T is de�ned by a set of deduction rules	

projection � is in FProj T if � fproj T can be inferred by the rules given following�

There is only one projection for ���

ID fproj �� �

For product types there are all of the projections that can be expressed as products

of projections on the components�

�� fproj T� � � � �n fproj Tn

�� � � � � � �n fproj �T�� � � � �Tn�
�

Sums� like products� follow the pattern of PS� �

BOT fproj c� T� � � � � � cn Tn �

�� fproj T� � � � �n fproj Tn

���� � � � � �
�n�� fproj c� T� � � � � � cn Tn
�

Again the treatment of Int is consistent with either hypothetical de�nition�

BOT fproj Int � ID fproj Int �

For recursively�de�ned types we choose only those projections that act on each re�

cursive instance of a data structure of the same type in the same way� Given

Ai�Ti�A������An�� � 	 i 	 n� if by assuming �i fproj Ai for � 	 i 	 n we may

deduce Pi
��� ���� �n� fproj Ti�A������An� for � 	 i 	 n� then

�
��� � � � � �n��
P�
��� � � � � �n�� � � � �Pn
��� � � � � �n��

CHAPTER �� FIRST	ORDER ANALYSIS ���

is a tuple
��� � � � � �n� of projections such that �i fproj Ai for � 	 i 	 n�

Then FProj T is a sublattice of SProj T� for all T� containing BOT and ID �

Example� The abstract projection domain FProj �� is fIDg	 its u�basis is empty�

Example� The domain FProj Int is fBOT � IDg	 its u�basis is fBOTg�

Example� The domain FProj Bool is also fBOT � IDg�

Example� For �Int�Bool� the abstract projection domain is fBOT �BOT � ID�

BOT � BOT � ID � ID � IDg with u�basis fID � BOT � BOT � IDg�

Example� For IntList the abstract projection domain comprises BOT and two

projections SPINE BOT and SPINE ID 	 the u�basis is fBOT � SPINE BOTg�

Example� The elements of FProjIntListList are SPINE
SPINE ID� which is ID�

SPINE
SPINE BOT �� SPINE BOT� and BOT�

Example� The elements of FProj BoolTree are BOT� BRANCH BOT� and

BRANCH ID� where

BRANCH � � ����� �
� � ��� �

Then BRANCH ID is ID and BRANCH BOT acts as the identity on the branch

nodes of all trees but maps all leaves to ��

Again� abstraction of the zero� and �rst�order semantics to the �nite projection do�

mains is in the obvious way�

����� Examples of analysis

We give some examples of analysis in FProj �

CHAPTER �� FIRST	ORDER ANALYSIS ���

Example� Let or be de�ned as before� In FProj we may express SELi by

�
�� � � � �� �n���i � Then

orF� � chooseF�
�
�� �����

intrueF� �mkunitF�� id �

�
�� ����� �

which is determined by

BOT � ID �� BOT �

ID � BOT �� BOT �

so we have BOT � BOT �� BOT and ID � ID �� ID� This reveals that the result

of orS� is static if both of its arguments are static and dynamic otherwise� Note

that this result is optimal in FProj � though as shown� analysis
of the body of the

de�nition� in the full domain of projections is suboptimal�

Example� Let length be de�ned as before� Then lengthF� is the greatest �xed

point of

�� � chooseF�
����� ���ID� � � SEL� �OUTCONS � �

which is determined by

BOT �� BOT �

SPINE BOT �� ID �

which is optimal�

Example� Let append denote the function that appends two integer lists�

append 	 �IntList�IntList�
� IntList

append �xs�ys� � case xs of

nil �� �� ys

cons �z�zs� �� cons �z� append �zs�ys��

Then the generic semantics is

�x � choose
sel� x �

sel� x �

incons
tuple

sel� � outcons � sel�� x �

apply append
tuple

sel� � outcons � sel�� x �

sel� x �����

CHAPTER �� FIRST	ORDER ANALYSIS ���

Then appendF� is the greatest �xed point of

�� � chooseF�
SEL��

SEL��

INCONSF� � ���

SEL� �OUTCONS � SEL�� � �

� � ���

SEL� �OUTCONS � SEL�� � �

SEL� ����

which is determined by

SPINE ID� �
SPINE BOT � �� SPINE BOT �

SPINE BOT � �
SPINE ID� �� SPINE BOT �

SPINE ID� � BOT �� BOT �

BOT �
SPINE ID� �� BOT �

which is optimal�

Example� Let reverse� denote the simple reverse function for lists�

reverse� 	 IntList
� IntList

reverse� xs � case xs of

nil �� �� nil ��

cons �y�ys� �� append �reverse� ys�

cons �y� nil ���� �

Then reverse
F� is the identity� which is optimal�

Example� Let reverse� denote the usual two�argument function to reverse a list�

reverse� 	 �IntList�IntList�
� IntList

reverse� �xs�ys� � case ys of

nil �� �� xs

cons �z�zs� �� reverse� �cons �z�xs�� zs� �

Then reverse�F� is �
�� ���
� u ��� which is optimal�

Example� Let concat denote the function that concatenates a list of lists�

concat 	 IntListList
� IntListList

concat xss � case xss of

lnil �� �� nil ��

lcons �ys�yss� �� append �ys� concat yss� �

Then concatF� maps BOT to BOT and SPINE � to �� which is optimal�

Recall the de�nition of dfs�

CHAPTER �� FIRST	ORDER ANALYSIS ���

dfs 	 BoolTree
� Bool

dfs t � case t of

leaf �� �� b

branch �l�r� �� or �dfs l� dfs r� �

Then dfsF� is the least function� which is optimal�

Let countleaves denote the function that returns the number of leaves in trees of

type BoolTree�

countleaves 	 BoolTree
� Int

countleaves t � case t of

leaf �� �� �

branch �l�r� �� countleaves l
 countleaves r �

Then countleavesF� maps BRANCH BOT to ID and BOT to BOT � which is optimal�

��� Termination Analysis

Recall that the nominal goal of termination analysis is� given f � to determine as small

� as possible such that
� �� � f� w f� � � for all �	 in terms of
zero�order� expression

semantics� given e� to determine � such that
� �� � ES���� e �� w ES�� �� e �� � � for all ��

The development of the zero�order forward termination semantics L� is parallel to that

for the B� semantics	 the starting point is the N�� semantics� Since a lifted function is

not in general determined by any single FTA� least FTAs are not guaranteed to exist�

and abstract composition does not preserve leastness� the �rst�order L� semantics will

not yield least FTAs or determine the S� semantics� The L� and L� semantics are the

same as that described in �Dav����

The type predicate between values g and � in the N�� and L� semantics requires that

� be a FTA of g � so

RN��L��� T ��
g � �� � �� �
� �� � g w g � � �

Hence we require that if �L� is a FTA of �N�� then EL��� e �� �L� be a FTA of

EN���� e �� �N�� and hence of ES���� e �� � �N��	 in particular� when �N�� is the identity

its least FTA is the identity ����� and EL��� e ��
����� will be a FTA of ES�� �� e ���

All FTAs of lifted functions will be strict� and are necessarily bottom�re�ecting	 we

will use � to facilitate their de�nition and
sb
� to construct the projection transformer

domains� Here Proj T is j T S�� �� T �� j�

Let Egl be the type of global environments� Then

T L� �� T �� � Proj Egl
sb
� Proj T �

CHAPTER �� FIRST	ORDER ANALYSIS ���

For e
T with environment type E we have EL��� e �� � T L� �� E ��� T L� �� T ��� that is

EL� �� e �� �
Proj Egl
sb
� Proj E� �
Proj Egl

sb
� Proj T� �

again� a function from projection transformers to projection transformers�

Recall that each N�� constant conN�� is de�ned by

conN��
g�� � � � � gn� �
conS����� � hhg�� � � � � gnii �

If �i is a
least with respect to smash projections� FTA of gi for � 	 i 	 n then

���

�� ��� � � ��
�n ��� is a
least with respect to smash projections� FTA of

hhg�� � � � � gnii� and abstract composition is ordinary composition
and preserves least�

ness with respect to smash projections�� Hence each L� constant is de�ned by

conL�
��� � � � � �n� � j
conS���� j � ���

�� ��� � � ��
�n ��� �

where in the context of forward termination analysis j f j is the least FTA of f � De�

tailed de�nitions of the constants are given following�

For v � V�� v �� �� and v �nite� and given domain U�� de�ne the characteristic

projection transformer
for forward termination abstraction� ACCEPTv to be the

least FTA of the lifted constant function �x �v � U�
sb
� V�� de�ned by

ACCEPTv � jU� j
sb
� jV� j �

ACCEPTv � ����v �

Then ACCEPTv is the projection transformer that maps projections other than

BOT� to the projection �v that speci�es termination with value v � and ACCEPTv

determines v � The least FTA of mkunitS�� � ���lift
� is ACCEPTlift �	� so

mkunitL� � � ACCEPTlift �	 � �

�
���BOT�� � � �

For integer constants�

mkintL�i � � ACCEPTlift� i � �

�
���Ni� � � �

The other unary constants are de�ned similarly� The least FTA of selS��i is

j selS��i j � j
T��� � � � ��
Tn�� j
sb
� j
Ti�� j �

j selS��i j � � j jf�i j �� � � � �� �n w �g �

The least FTA of incS��i is Ci � The least FTA of outS��i is

j outS��i j � j

T��� � � � ��
Tn���� j
sb
� j
Ti�� j �

j outS��i j
�� � � � �� �n�� � �i �

CHAPTER �� FIRST	ORDER ANALYSIS ���

Since
tupleN���� is the identity we have

tupleL�
��� � � � � �n� � ���
�� ��� � � ��
�n �� �

We use a variant of the case function in which the guards are of the form t�� and

the result of the function is the lub of all of the instances of all of the branches for

which the pattern � approximates the selector� The least FTA of
plusS���� is then

�� � case � of

t
ABS � �� � ABS

t
� � ABS � � ABS

t
Ni � Nj � � Ni�j �

so

plusL�
��� ��� � �� � case
�� ���
�� �� of

t
ABS � �� � ABS

t
� � ABS � � ABS

t
Ni � Nj � � Ni�j �

The least FTA of
chooseS���� is

�� � case � of

t
BOT� � �� � � � �� �n� � BOT�

t

Ci ��� �� � � � �� �n� � �i �

Intuitively� if the selector in a case expression may fail to terminate� so may the

result� otherwise termination is determined by all patterns that can match� We have

chooseL�
��� � � � � �n�

� �� � case
�� ��� � � ��
�n �� of

t
BOT� � �� � � � �� �n� � BOT�

t

Ci ��� �� � � � �� �n� � �i �

Again it is straightforward to derive the de�nition of plusL� from the de�nition of

chooseL��

Proposition 	���

The N�� and L� semantics are correctly related� More� if �L� is a FTA of �N�� that

is least with respect to smash projections then EL��� e �� �L� is a FTA of EN���� e �� �N��

that is least with respect to smash projections� �

Example� Let x
Int be a variable with corresponding type E of environments equal

to Int� The expression to be analysed is x � �� Let �L� be the identity function

����� the least FTA of the identity� so that �L� �� x �� � ����� Let the projection

CHAPTER �� FIRST	ORDER ANALYSIS ���

OKS � j T S�� �� Int �� j for S � Z be de�ned by OKS �
F
i�S Ni � so OKS speci�es

termination with some value in S � Then EL��� x � � �� �L� maps OKS to OKfi�� j i�Sg	

in particular it maps Ni to Ni�� for all i � Z� ABS to ABS � STR
which is OKZ� to

STR� and ID to ID �

Example� Let the environment �L� be as in the last example� Then

EL� �� cons ��� cons �x� nil ���� �� �L�

� ���CONS
N� � CONS
�� NIL�� �

This shows that with the possible exception of the second element the entire structure

of the list is guaranteed to terminate� the �rst element with value �	 the second element

has the termination properties of x�

����� Abstraction

Abstraction to SProj or FProj is the same as for backward strictness analysis except

that the projection transformer domains are constructed using
sb
� instead of

B
�� We

consider two examples in FProj �

Example� Repeating the last example gives

EL� �� cons ��� cons �x� nil ���� �� �L� � ���FIN
� t STR� �

This shows that the spine of the list terminates� and all of the elements terminate if

x does�

Example� Let b
Bool� x
Int� and y
Int be variables with corresponding type E

of environments equal to �Bool�Int�Int� with the values of b� x� and y in the �rst�

second� and third positions� respectively� Let e stand for the expression

case b of

true �� �� x

false �� �� y �

Let �L� be the identity function ����� the least FTA of the identity� Then

�L� �� b �� � �
�b � �x � �y���b �

�L� �� x �� � �
�b � �x � �y���x �

�L� �� y �� � �
�b � �x � �y���y �

CHAPTER �� FIRST	ORDER ANALYSIS ���

Then

EL� �� e �� �L� � �
�b � �x � �y� � case �b of

tABS � ABS

tTRUE � �x

tFALSE � �y �

This reveals� for example� that for x and y with termination properties �x and �y

respectively� if b is certain to terminate with value true then the termination property

of the whole expression is �x	 if b is certain to not terminate then the whole expression

is certain not to terminate	 and if b is certain to terminate
with an unknown value�

then the termination property of the whole expression includes the possibilities for

both x and y�

����� First�order analysis

For �rst�order analysis we may abstract either the N�� or N�� semantics� Since the

latter yields a specialisation of the higher�order analysis developed in Chapter � and

we have no examples to contrast the two approaches we consider only the former�

The value denoted by a function symbol f in the �rst�order forward termination

semantics L� semantics is to be a FTA of the value it denotes in the S�� and N��

semantics� The L� semantics of �rst�order types is then

T L� �� T� �� T� �� � Proj T�
sb
� Proj T� �

The required relation between values g and � in the N�� and L� semantics is that �

be a FTA of g � so

RN��L��� T� �� T� ��
g � �� � �� �
� �� � g w g � � �

Thus� if
N�� and
L� are function environments such that
L��� f �� is a FTA of
N���� f ��

for each f� and �L� is a FTA of �N�� � we require that EL� �� e ��
L� �L� be a FTA

of
EN���� e ��
N��� �N�� and therefore of
ES�� �� e ��
N��� � �N��� In particular� when

�N�� is the identity on variable environments� its least FTA is the identity ����� and

EL��� e ��
L�
����� must be a FTA of ES�� �� e ��
N�� �

Application in L� is abstract
ordinary� composition�

applyL� �� �� � �� � �� �

Then applyN�� and applyL� are correctly related�

Proposition 	���

The semantic functions EN�� and EL� are correctly related� Further� if
N�� and
L�

CHAPTER �� FIRST	ORDER ANALYSIS ���

are function environments such that
N���� f �� is a FTA of
L��� f �� that is least with

respect to smash projections for each f� and �L� is a FTA of �N�� that is least with

respect to smash projections� then EL��� e ��
L� �L� is a FTA of
ES�� �� e ��
N��� � �N��

that is least with respect to smash projections� �

Next we give the L� semantics of a set of �rst�order function de�nitions� This is not

as straightforward as for the other semantics�

Let function de�nitions F be �xed and let
N��i � i
 � be the approximations of the

function environment
N�� given by the N�� semantics� Then
N��� �� f �� � �x�lift �

for each f with least FTA ���BOT�� so we de�ne the initial approximation of the L�

function environment by
L�� �� f �� � ���BOT� for all f� which is least with respect to

smash projections� Now ���� is the least FTA of id � and we de�ne the function F

from function environments to function environments by

F
 �
EL��� e� ��

������ � � � � EL��� en ��

������ �

and de�ne
L�i � F i
L�� for i
 �� By Proposition ���� and induction
L�i is correctly

related to
N��i for all i � and is least with respect to smash projections� The prob�

lem is that the sequence f
L�i g is not guaranteed to be monotonically increasing
or

decreasing� so we cannot give a straightforward �xed�point semantics for EL�defns � We

give some examples� Consider

one 	 ��
� Int

one �� � � �

Let oneL�i denote the i th value of function one in the sequence� Then

oneL�� � ���ABS �

oneL�i � ���N�� for i
 � �

Though the sequence is not increasing a �xed point is reached after one step� Next

consider the simultaneous de�nitions

fa 	 ��
� IntList

fa �� � cons ��� fb ���

fb 	 ��
� IntList

fb �� � cons ��� fc ���

fc 	 ��
� IntList

fc �� � nil �� �

Then

faL�� � ���ABS �

faL�� � ���CONS
N� � ABS� �

faL�� � ���CONS
N� �
CONS
N� � ABS ��� �

faL�i � ���CONS
N� �
CONS
N� � NIL���� for i
 � �

CHAPTER �� FIRST	ORDER ANALYSIS ���

So a �xed point is eventually reached� Next consider the constant function that

returns the in�nite list of ones�

ones 	 ��
� IntList

ones �� � cons ��� ones ��� �

We have

onesL�� � ���ABS �

onesL�� � ���CONS
N� � ABS � �

onesL�� � ���CONS
N� �
CONS
N� � ABS ��� �

and generally

onesL�i � ���
���CONS
N�� ���
i ABS � i
 � �

Every approximation is incomparable to every other and a �xed point is never reached�

Finally� consider the function zero that returns zero for non�positive arguments�

zero x � case �x � �� of

true �� �� �

false �� �� zero �x
 �� �

Then

zeroL�� � ���BOT� �

zeroL�i�� � chooseL�
��� ���N�� zero
L�
i � ��� �

where �� and �� have the guard property� �� maps N� to TRUE and maps Ni for i �� �

to FALSE � and �� maps Ni to Ni�� for all i � Then zeroL�i has the guard property and

maps N�j to N� for � 	 j
 i � and to ABS otherwise� Again every approximation is

incomparable to every other and a �xed point is never reached�

We give two closely related approaches to solving this problem using widening and

narrowing �CC���� Recall that over�approximation is safe� and the domains of pro�

jection transformers are complete lattices so lubs always exist� If we de�ne
L�i
� by

L��
� �
L�� �

L�i��
� �
L�i

� t
L�i��� for i
 � �

then the
L�i
� form an increasing sequence� each
L�i

� is a safe approximation of
L�i �

and by inclusivity their limit is correctly related to
N�� � Here the widening operator

is t�

�In the full projection domains our widening operator does not fully conform with the Cousots�
de�nition because it does not guarantee convergence in a �nite number of steps� but it does when
working with the �nite projection domains�

CHAPTER �� FIRST	ORDER ANALYSIS ���

Repeating the examples we have

oneL� � ���ABS t N� �

faL� � ���ABS t CONS
N� �
ABS t
CONS
N� �
ABS t NIL����� �

onesL� � ���ABS t INF N� �

and zeroL� has the guard property� maps projections below
F
i��Ni other than FAIL

to ABS and all other eager projections other than FAIL to ID � In no case is absolute

termination determined� though for fa and ones head termination is determined�

We could leave it at this� but following �CC��� we use the widening operator to de�ne

a new function wF that has the desired �xed point and safely approximates F �

wF
 �
 t
F
� �

Now wF is greater than the identity so fwF i
 j i
 �g is increasing for all
� We

de�ne EL�defns by

EL�defns �� F �� �
F
i�� wF i
L�� �

In general this gives a greater
worse� result than the last solution� but gives the same

results for the examples given� The advantage is that it allows an easy improvement

of the result� Let
L� be the least �xed point of wF greater than
L�� � so
L� is

correctly related to
N�� � Then fF i
L� j i
 �g is a decreasing sequence� every

element of which is correctly related to
N�� �
This is narrowing 	 here the narrowing

operator is the identity�� When the depth of the projection transformer domain is

�nite the sequence must reach a �xed point in a �nite number of steps� We consider

the examples again� �rst in the full projection domains� Let F comprise the given

de�nitions of one� fa� fb� fc� ones� and zero� Now let
L�� be EL�defns �� F �� and
L�i�� be

F
i for i
 �� so the
L�i form a decreasing sequence� Finally� let oneL�i be
L�i �� one ��

for i
 �� and similarly for the other functions� Then

oneL�� � ���ABS t N� �

oneL�i � ���N�� for i
 � �

Here the optimal solution is reached in one extra step� For fa�

faL�� � ���ABS t CONS
N� �
ABS t
CONS
N� �
ABS t NIL����� �

faL�� � ���CONS
N� �
ABS t
CONS
N� �
ABS t NIL����� �

faL�� � ���CONS
N� �
CONS
N� �
ABS t NIL���� �

faL�i � ���CONS
N� �
CONS
N� � NIL���� for i
 � �

So the optimal answer is reached in three extra steps� For ones�

onesL�� � ���ABS t
INF N�� �

onesL�� � ���CONS
N� �
ABS t
INF N���� �

onesL�� � ���CONS
N� �
CONS
N� � ABS ��� �

CHAPTER �� FIRST	ORDER ANALYSIS ���

and generally

onesL�i � ���
���CONS
N�� ���
i
ABS t
INF N���� i
 � �

so we can determine that any �nite pre�x of ones �� terminates� We can determine

that zero terminates for any given non�positive argument�

Repeating the examples in FProj we get

oneL� � ���N� �

faL� � ���FIN STR �

onesL� � ���INF STR �

Function zeroL� has the guard property and maps STR to ID	 all four results are

optimal�

Though the �rst approach gives a better widened result
L� � than the second� there is

no guarantee that the sequence fF i
L� � j i
 �g is decreasing� though every element

of the sequence will be correctly related to
N�� �

When working in FProj we de�ne

EL�defns �� F �� � j ji�� F i

F
i�� wF i
L�� � �

Proposition 	���

The N�� and L� semantics are correctly related� �

We give more examples in FProj �

Example� De�ne the identity on lists by

listid 	 IntList
� IntList

listid xs � case xs of

nil �� �� nil ��

cons �y�ys� �� cons �y� listid ys� �

Then

listidL� � �� � case � of

tABS � ABS

tNIL � NIL

t
CONS
�� ��� � CONS
�� listidL� ��

Then listidL� has the guard property and is determined by

FIN � �� FINF � �

INF � �� INF � �

for � in FProj Int�

CHAPTER �� FIRST	ORDER ANALYSIS ���

Example� Let append be de�ned as before� then

appendL�

� �
�xs � �ys� � case �xs of

tABS � ABS

tNIL � �ys

t
CONS
�z � �zs��

� CONS
�z �
appendL�
�zs � �ys��� �

Then appendL� has the guard property� maps NIL� � to � for all �� for � �� FAIL

maps arguments as follows�

FIN ���
FIN ��� �� FINF
� t �� �

FIN ���
INF ��� �� FINF
� t �� �

INF ���
FIN ��� �� FINF
� t �� �

INF ���
INF ��� �� INF
� t �� �

for lazy �rst argument�

ABS t ���� �� �� ABS t appendL�
�� � �� �

and for all other arguments

��
ABS t ���� �� appendL�
�� ��� �

Example� Let reverse� be de�ned as before� then reverse
 L� has the guard prop�

erty� hence is determined by

reverse
 L�
FIN �� � FINF � �

reverse
 L�
INF �� � INF � �

We conclude with some informal observations� When working in the full projection

domains� analysis will reveal termination of a function only when it occurs in a number

of steps bounded by some constant
in addition to how much evaluation might be

required to evaluate the arguments�� Thus we can determine that one �� terminates

and that the entire structure of fa �� terminates� that any �nite pre�x of ones ��

terminates� and that zero terminates for any given non�positive argument� but not

that it terminates for all non�positive arguments
the latter requires an inductive

proof� In FProj � very roughly� this is further restricted to values that are not built

up using recursion and do not depend on the particular values of integers� We believe

that for an implementation this is exactly the information we would want to use� we

do not want early evaluation of the entire spine of a list knowing only that it is �nite�

CHAPTER �� FIRST	ORDER ANALYSIS ���

or to eagerly evaluate zero ���������	 the very limitations of the technique appear

to obviate the need for operation count analysis�

We conjecture that in FProj the sequence fF i
L�� j i
 �g� though not increasing�

does reach a �xed point� that is� does not cycle
if so� the result could only be

better than by the method given� The following is an informal argument for why

this should be so� Suppose that for the purpose of comparing the results of successive

iterations that the relative ordering of eager and lazy projections in the result domains

of projection transformers is reversed� then the results of successive iterations will be

increasing� intuitively� better approximations of functions fail to terminate with a

decreasing subset of the argument domain and have an increasing subset of the result

domain as possible results�

��� Summary and Related Work

We have given non�standard interpretations for projection�based strictness� binding�

time� and termination analysis of a simple �rst�order non�strict monomorphic func�

tional language� Following we consider each in the context of related work in the

�eld�

Strictness analysis� We have reformulated an analog of Wadler and Hughes� anal�

ysis technique �WH��� and shown that before abstracting the projection domains our

technique gives the best possible results� We have implemented a prototype strictness

analyser using the second approach to �rst�order analysis �Dav����

We have shown that it is possible to uniquely encode abstract values in the BHA

framework for strictness analysis as projections� and we have shown that some of

these properties
e�g� head�and�tail strictness� can be determined by program analysis�

At �rst order with �at domains Neuberger and Mishra �NM��� show that projection�

based backward strictness analysis� when restricted to the projections ID� ABS � STR�

and BOT � is as strong as Mycroft�s analysis� A more general question is whether for

any choice of �nite abstract domains there is a �nite abstract projection domain

such that our technique always gives as informative results as BHA analysis	 we

suspect that this is true� and that the results regarding leastness with respect to

smash projections would be useful in proving such an assertion�

Hughes and Launchbury �HL��a� have generalised Wadler and Hughes� approach to

polymorphic �rst�order languages using polymorphic projections with only a slight

CHAPTER �� FIRST	ORDER ANALYSIS ���

loss in accuracy� Kubiak �KHL��� has implemented� as part of the Haskell compiler�

their technique for a �rst�order subset of the Haskell Core language�

Hughes argued �Hug��a� Hug��b� that backward strictness analysis is intrinsically

more e�cient than forward analysis because it only considers independent strictness

strictness in individual arguments
and therefore cannot capture relational � or joint�

strictness in two or more arguments� This is in fact an artefact of his and Wadler�s

analysis techniques	 we have shown �DW��� that BHA�style strictness analysis can

also be �un�relationalised� to get more e�cient but less accurate analysis techniques�

Binding
time analysis� Our �rst approach to �rst�order analysis is essentially a

reformulation of Launchbury�s monomorphic technique �Lau��a�� Launchbury also

gave a polymorphic generalisation of the technique and an implementation of each as

part of a partial evaluator� The generalisation to polymorphism� again using polymor�

phic projections� is based on essentially the same theory as Hughes and Launchbury�s

strictness analysis technique�

Termination analysis� Ours is the �rst projection�based termination analysis

technique� It is interesting because it can detect such properties as head termination�

which� to be best of our knowledge� has not been captured by any other technique� It

would be worthwhile to determine whether this technique can be generalised to poly�

morphism in the same way as are the strictness and binding�time analysis techniques�

Again there is the question of whether any information that can be determined in

the BHA framework can always be captured by our technique	 again� we suspect that

this is true�

��� Higher order�

This section gives very informal and intuitive indications of why the �rst�order tech�

niques don�t generalise directly to higher order� and the key to higher�order general�

isation� The higher�order techniques are properly developed in Chapter �� Since the

problems and their solutions are essentially the same for all of the analysis techniques

we use binding�time analysis as the example since it involves simpler domains�

The problem boils down to �nding a compositional semantics� Consider the expression

�app� �
�x�b� �� where x
Int� b
Bool� and the environment has a single entry for

b and is therefore of type Bool� Let Bool be T S�� Bool ��� If the abstract value of an

CHAPTER �� FIRST	ORDER ANALYSIS ���

expression e is to be a FSA of ES�� e ��� then the abstract values of �
�x�b� and � will

come from domains jBool j
F
� j Int � Bool j and jBool j

F
� j Int j� respectively� We

expect the non�standard semantics to be compositional and so require a function apply

that takes a value from each of these domains and returns a value from jBool j
F
�

j Int j� There seems no obvious way to get the desired result� Our �rst working

premise is that at higher order� forward�strictness abstraction of ES�� e �� is the wrong

abstraction�

A key observation is that evaluation is never performed inside a lambda body

lambda expressions
�x�e cannot be evaluated� only applied� For example� for the

simple data structure lam �
�x�b�� evaluation can only proceed as far as WHNF�

and there are only two distinguishable degrees of staticness� The projection domain

j
Int � Bool�� j is vastly richer than necessary to specify two degrees of staticness

the projections ID and BOT are su�cient� Denotationally� evaluation to WHNF

corresponds to determination of the outermost lifting� which may be represented in

the domain ��	 the two distinct projections on �� are ID and BOT � When values from

Int � Bool�� are to be applied� they are �rst dropped to yield a value in Int � Bool �

e�ectively ignoring the lifting� This suggests factorising the domain
Int � Bool��

into �� and Int � Bool 	 more generally� factorising domains into two parts� one to

encode the evaluable� or data parts of values� and the other to encode the unevaluable

but applicable� or forward parts of values�

There is an embedding of
Int � Bool�� into �� �
Int � Bool�� de�ned by

emb � �
���� �

emb
lift f � �
lift
�� f � �

and hence an embedding of Bool �
Int � Bool�� into Bool �
���
Int � Bool��	

the latter domain is isomorphic to

Bool � ����
Bool �
Int � Bool�� �

Under the implied embedding and isomorphism the value ES�� lam
�x�b �� becomes

���lift
�� ����x���� b ���� We claim that it is a FSA of ���lift
� that we want	 for

example� its greatest FSA is ���ID which indicates that the result is static regardless

of the staticness of the environment�

There is a further complication that the environment may contain higher�order values	

looking ahead� our point of view is that staticness is an attribute of the data part of

a value� so the goal is to determine how the staticness of the data part of ES�� e �� �

depends on the staticness of the data part of �� For strictness analysis we seek to

determine how demand on the data part of ES�� e �� � is propagated to demand on the

CHAPTER �� FIRST	ORDER ANALYSIS ���

data part of �	 for termination analysis� how the termination properties of the data

part of � a�ect the termination properties of the data part of ES�� e �� �� Our second

working premise is that a factorisation of standard domains into data and forward

domains is in order� and that we are only interested in projections on data domains�

Chapter 	

Higher�Order Analysis

The higher�order analysis techniques are developed as follows� First we de�ne the

factorisation of standard domains� the embedding of standard domains into factored

domains� and the projection back into the standard domains� To clearly separate the

roles of the data and forward parts of values in the standard semantics� we de�ne a

factored semantics D such that the standard expression semantics ES is the homomor�

phic image of ED under the projection from factored domains onto standard domains�

Except for the constant �x the D semantics is de�ned in terms of the S� semantics in

such a way that obtaining the higher�order intermediate and analysis semantics
the

higher�order analogs of the N�� N��� B�� F�� and L� semantics
amounts to replac�

ing the S� entities by their N�� N��� B�� F�� and L� counterparts� respectively� More

precisely� we de�ne semantics that are parameterised by the zero�order entities and a

constant �x �

��� Domain factorisation

Given type T with corresponding domain T in the standard semantics� we wish to

factor each value in T into its data and forward parts� To this end we de�ne for

each T a data domain D and forward domain F � and functions dataT � T � D and

funT � T � F to isolate the data and forward parts of values� respectively� The

data domain D is constructed just like T except that the one�point domain � replaces

function spaces� and the function dataT is a projection that� roughly speaking� discards

function components of data structures by mapping them into �� and leaves everything

else unchanged� The forward domain F carries the information discarded by dataT�

The factorisation function facT � hdataT� funTi � T �
D�F � is an embedding with

corresponding projection unfacT� and D � F is therefore a factorisation of T �

���

CHAPTER
� HIGHER	ORDER ANALYSIS ���

Recall that the zero�order type semantics T G� � for all G
more precisely� for G ranging

over the symbols S� S�� N� N�� B� F� and L� are de�ned only for integer� sum� and

product types� They are extended to function types by

T G� �� T� �� T� �� � T G� �� �� �� �

The predicates RG�H� are similarly extended� RG�H��� T� �� T� �� is de�ned to be

RG�H� �� �� �� for all combinations of G and H for which RG�H� was de�ned�

To avoid a name clash later we will henceforth use D� as a replacement for the symbol

S�
and D�� as a replacement for S���� The function T D�
formerly T S�� maps types

to standard data domains	 T D� is exactly the same as T S except that function spaces

are replaced by �� so for zero�order types T the data domain T D� �� T �� is the same as

the standard domain T S�� T ��� For function type T� �� T� the standard domain is the

lifted function space
T S�� T� ��� T S�� T� ���� but the data domain comprises just the

outer lifting� it is ��� Further examples are given in Figure ����

Given type de�nitions D we de�ne dataT to be DATA�� T ��
DATAdefns �� D ���� where

DATAdefns is de�ned in terms of DATA� and DATA�� T �� is de�ned compositionally in

terms of the structure of T� For domain environment �S and function environment �

such that

��� A �� � �S�� A �� � T D�

defns �� D ���� A ��

for each type name A� the functionality of DATA is such that

DATA�� T �� � � T S�� T �� �S � T D� �� T ��
T D�

defns �� D ���

for each type T� The function DATA is de�ned following	 it is just like the identity

except that values from function spaces are mapped into ��

DATA�� A �� � � ��� A �� �

DATA�� Int �� � � idInt �

DATA�� �T�� � � � �Tn� �� � �
DATA�� T� �� �� � � � � �
DATA�� Tn �� �� �

DATA�� c� T� � � � � � cn Tn �� �

�
DATA�� T� �� ��� � � � � �
DATA�� Tn �� ��� �

DATA�� T� �� T� �� � � �x �
� �

Here DATA�� �� �� � � �x��� Given type de�nitions D � A� � T�	 � � � 	 An � Tn � de�ne

�i �
����Ai �� DATA�� Ti �� � j � 	 i 	 n��i �� �

CHAPTER
� HIGHER	ORDER ANALYSIS ���

Bool � true �� � false ��

T S�� Bool �� � �� � ��

T D� �� Bool �� � �� � ��

T Dz �� Bool �� � �� �

dataBool � id

funBool � �x �

��
��

IntList � nil �� � cons �Int� IntList�

T S�� IntList �� � �X ��� �
Int � X ��

T D� �� IntList �� � �X ��� �
Int � X ��

T Dz �� IntList �� � �X ���
�� X � �� �

dataIntList � id

funIntList � �x �

��

��

�� � � ���� � �x ��

FunChoice � left �Int �� Int� � right �Int �� Int�

T S�� FunChoice �� �
Int � Int��� �
Int � Int���
T D� �� FunChoice �� � ��� � ���
T Dz �� FunChoice �� �

Int � ���
Int � ����

Int � ���
Int � ���

dataFunChoice � �x�case x of

� � �

i � lift �� �
i � lift
��

i � lift� f � �
i � lift�
��

funFunChoice � �x�
�v �
v �
�� �
out� x � � �
v � u��v �

�v �
v �
�� �
out� x � � �
v � u��v�

FunList � fnil �� � fcons �Int �� Int� FunList�

T S�� FunList �� � �X ��� �

Int � Int�� � X ��

T D� �� FunList �� � �X ��� �
�� � X ��

T Dz �� FunList �� � �X ���

Int � ���
Int � ���� X �

dataFunList � �f �
�x �
��� �

�x �
��� � f ��

funFunList � �f ��x �

��

funInt��Int � 	� � out�� x �
f � 	� � out�� x ��

Figure ���� Examples of domain factorisation�

CHAPTER
� HIGHER	ORDER ANALYSIS ���

where

�� � �Ai �� DATA�� �� �� � � j � 	 i 	 n� �

Let data i � �i�� A �� for any A� Then datai � �Si �� A �� � T D�

defns �� D ���� A ��� where �Si �� A ��

is the ith canonical approximating domain for T Sdefns �� D ���� A ��� Also� datai �

Si �

id� datai�� where

S
i is the canonical embedding from �Si �� A �� to �

S
i���� A ��� so the datai

constitute the family of approximations of
and therefore de�ne� DATAdefns �� D ���� A ���

We give some examples� For all zero�order types T the projection dataT is the identity�

For type T� �� T� we have

dataT���T� � � � �

dataT���T�
lift f � � lift
� �

The projection dataFunList preserves the spine of its list argument and the lifting of

the list elements� and discards the rest� so

dataFunList
lift f � � � lift � � � �� � lift
� � � � lift
� � � � �

where f is any unary function on Int � Further examples are given in Figure ����

The next question is how to represent the forward part of a value� Certainly a value

itself contains its forward information� but our goal is for the designated forward

part to contain exactly that part of the original information missing from the data

part� A complement of a projection � is any projection � such that � t � � ID �

and if �� � � jU j then h�� �i is an embedding of U into �
U �� �
U �� In other

words� any information removed by a projection is retained by its complement� Not

every projection has a least complement
one that retains as little information as

possible
but it turns out that those of the form dataT do� Unfortunately� even least

complements may retain redundant information� Here the problem arises when the

de�ning type T is a sum of types containing function types� To be concrete� recall

FunChoice � left �Int �� Int� � right �Int �� Int� �

so

T S�� FunChoice �� �
Int � Int��� �
Int � Int��� �

and

dataFunChoice
T S�� FunChoice ��� �� ��� � ��� �

dataFunChoice
T S�� FunChoice ��� ��
Int � Int��
Int � Int� �

Both dataFunChoice v and dataFunChoice v may contain information about which sum�

mand v belongs to� for example if v � inl
lift�
���� where
�� is unary negation on

Int � then dataFunChoice v � inl
lift�
��� and dataFunChoice v � inl
���

CHAPTER
� HIGHER	ORDER ANALYSIS ���

Another possibility is dependent sum decomposition
as described by Launchbury

�Lau��b� Lau��a��� In brief� if T � T S�� T �� then

T ��
X

v � dataT�T 	

dataT�
�� fvg �

Elements of the dependent sum are pairs� where the value v � dataT
T � of the �rst

component of a pair dictates the domain
dataT�
�� fvg from which the second compo�

nent comes� This will not serve our purposes because
roughly speaking� we will need

to be able to manipulate the data and forward components independently� which will

require knowing from what domain the second component comes without knowing

the value of the �rst�

The mapping funT of values to their function parts will be the least complement

of dataT followed by an embedding� The embedding maps sums T� � � � � � Tn into

products T� � � � � � Tn� and for convenience of presentation� function spaces T� �

T� to spaces of function from factored values to factored values� that is� to
D� �

F�� �
D� � F�� where D� � F� and D� � F� are the factorisations of T� and T��

respectively�
Intuitively� mapping sums into products discards the information about

which summands injected values belong to��

At this point we de�ne a type semantics parameterised by a zero�order type semantics�

Given zero�order type semantics T G� and type de�nitions D� de�ne T G by

T G�� T �� � �
T G� �� T ��
T G�defns �� D ���� �
T Gz �� T �� �� �

where T Gz is de�ned by

T Gz �� Int �� � � �

T Gz �� �T�� � � � �Tn� �� � T Gz �� T� �� � � � � � T Gz �� Tn �� �

T Gz �� c� T� � � � � � cn Tn �� � T Gz �� T� �� � � � � � T Gz �� Tn �� �

T Gz �� T� �� T� �� � T G�� T� �� � T G�� T� �� �

Here T Gdefns is de�ned in terms of T Gz
as T Sdefns is de�ned in terms of T S��

Now for T � T S�� T ��� the factors D and F of T are T D� �� T �� and T Dz �� T �� respectively	

T Dz �� T �� is the the standard forward domain at type T� Note that T Dz �� T� �� T� �� is

a domain of functions from factored values to factored values� not forward values to

forward values� For all zero�order types T the domain T Dz �� T �� is isomorphic to ��

For type T� �� T� the standard domain is
T S�� T� ��� T S�� T� ����	 the forward domain

lacks the lifting� it is T D�� T� ��� T D�� T� ��� Further examples are given in Figure ����

CHAPTER
� HIGHER	ORDER ANALYSIS ���

The de�nitions of funT and unfacT are interdependent and so are taken to be simul�

taneous� Given type de�nitions D the function funT is de�ned to be FUN �� T �� �D� and

the unfactorisation function unfacT is UNFAC �� T �� �D� where �D is determined by its

family of approximations f�ig de�ned by

�i �
����Ai ��
FUN �� Ti �� �� UNFAC �� Ti �� �� j � 	 i 	 n��i �� �

where

�� � �Ai ��
FUN �� �� �� � �� UNFAC �� �� �� � �� j � 	 i 	 n� �

Here function environments map type names to pairs of functions� so FUN �� A �� � �

	�
��� A ��� and UNFAC �� A �� � � 	�
��� A ���� Just as for other semantic functions we

abbreviate by omitting the environment parameter� Then

FUN �� T �� � T S�� T �� � T Dz �� T �� �

FUN �� Int �� � �x �
� �

FUN �� �T�� � � � �Tn� �� � FUN �� T� �� � � � � � FUN �� Tn �� �

FUN �� c� T� � � � � � cn Tn �� � �
�� � � � ��� �� �� � � � ���

FUN �� c� T� � � � � � cn Tn ��
i � lift v� �
�� � � � ��� FUN �� Ti �� v � �� � � � ���

�FUN �� Ti �� v in the ith position� �

FUN �� T� �� T� �� � UNFAC �� T� ��� hdataT� �FUN �� T� ��i �

and

UNFAC �� T �� � T D�� T �� � T S�� T �� �

UNFAC �� Int ��
x �
�� � x �

UNFAC �� �T�� � � � �Tn� ��

d�� � � � � dn��
f�� � � � � fn�� �
v�� � � � � vn�

where

vi � UNFAC �� Ti ��
di � fi�� � 	 i 	 n �

UNFAC �� c� T� � � � � � cn Tn ��
��
f�� � � � � fn�� � � �

UNFAC �� c� T� � � � � � cn Tn ��

i � lift d��
f�� � � � � fn�� �
i � lift v�

where

v � UNFAC �� Ti ��
d � fi� �

UNFAC �� T� �� T� ��

�� f � �
hdataT��FUN �� T� ��i � UNFAC �� T� ��� f �

CHAPTER
� HIGHER	ORDER ANALYSIS ���

Proposition ���

For all type de�nitions D and types T the pair

hDATA�� T ��
DATAdefns �� D ���� FUN �� T �� �Di� UNFAC �� T �� �D�

is a retraction pair�

Sketch Proof

For each A with
fun i� unfaci� � �i�� A ��� and datai the i
th canonical approximation of

dataA� we have
by induction on i� with inner induction on the structure of types�

that faci � hdatai� funii and unfaci form a retraction pair� with

faci � unfaci� � �Si �� A �� �
T D�

defns �� D ���� A �� � �Di �� A ��� �

where �Si and �Di are the ith canonical approximations of T Sdefns �� D �� and T
D
defns �� D ���

respectively� The faci and unfaci form families of approximations� We have

funi �

Si � �Di � fun i��� where
Si is the canonical embedding of �Si �� A �� into

�Si���� A ��� and �Di is the canonical projection from �Di���� A �� to �Di �� A ��� so faci �

Si �
�D�

i � �Di �� faci��� where �D�

i is the canonical projection from �D�

i���� A ��

to �D�

i �� A ��� The details for unfaci are similar� Finally� we claim that facT

and unfacT form a retraction pair for all T� The key fact required is that if

f
fi� gi� � Ui � Vi j i
 �g is a family of approximations of
f� g�� and each
fi� gi�

is a retraction pair� then so is their limit� By induction on the structure of types

we have that
hDATA�� T �� � �� FUN �� T �� � �i� UNFAC �� T �� � �� is a retraction pair for

all closed T� Since the initial approximations of these functions at recursive types is

the interpretation of the unit type� and the substitution lemma holds for all three

semantic functions� each approximation datai � funi � and unfaci can be expressed as

DATA�� T� �� � �� FUN �� T� �� � �� and UNFAC �� T� �� � � for some T�� hence the result� �

We give some examples� For any zero�order type T the forward domain is isomorphic

to � and funT is equal to �x ��� For any function type T� �� T� the standard domain

is
T S�� T� ��� T S�� T� ���� and funT���T�
is funT���T�

� drop	 function funT���T�
is an

embedding of functions from standard values to standard values to functions from

factored values to factored values� Further examples are given in Figure ���� Note

that sum types become products� so for FunList we have� for example�

funFunList
lift
�� � lift � � lift
�� � � ��

�

��
funInt��Int
���

��
��

��
funInt��Int
���

��
��

� �������� �

CHAPTER
� HIGHER	ORDER ANALYSIS ���

For unfacT we have for example unfac��

��
�� �
�� unfacT���T�
�� f� � � for all f �

and unfacT���T�
lift
�� f� � lift
unfacT� � f � facT���

The projection unfacT acts like the identity on the data part of its argument and as a

projection on the forward part� since for all data values d and forward values f with

d�� f �� � facT
unfacT
d� f�� we have d � d � and f � v f �

	���� Data dependency

Given expression e
T with environment type E� consider the equation

d �� f �� �
facT � E
S�� e �� � unfacE�
d � f � �

where d � and f � are the data and forward parts of the standard value of e for d

and f the data and forward parts of the environment� In operational terms d and

d � represent the evaluable part of the argument and result� and from an operational

point of view it is the mapping from d to d �
the data�dependency function
that we

are primarily interested in� it describes how much of d will be demanded given some

demand on d �
for strictness analysis�� how much of d � will be determined given that

a certain amount of d is determined
for binding�time analysis�� and what parts of

d � will terminate given that certain parts of d terminate
for termination analysis��

Clearly d �� and therefore the data�dependency function� is a function of f � which will

be considered shortly� For zero�order expressions e� or more generally� expressions

e of zero�order type and environment type� the data�dependency function is ES�� e ��

since for argument and result values each value and its data part are the same� For

a concrete example consider again lam �
�x
Int�b� where the type of b and the

environment is Bool� There is only one possible value of the forward part of the

environment� namely
�� and the data�dependency function is �b�inlamD�
�� which

shows that the data part of the value of the expression is de�ned regardless of whether

b is de�ned� The greatest FSA of �b�inlamD�
� is ���LAM ID� which we interpret

to mean that the constructor is static regardless of the environment
ID on � tells

nothing�� The least BSA of the lift of �b�inlamD�
�� that is of �b�lift
inlamD�
��� is

���ABS � indicating that the environment is not required to evaluate the expression

to WHNF� The least FTA of �b�lift
inlamD�
�� is ���LAM ABS � indicating that

regardless of the environment the expression is certain to terminate� This does not

mean� for example� that

LAM ID� � ES�� lam
�x�b �� v ES�� lam
�x�b �� � BOT

for binding�time analysis
note the functionality of LAM ID has changed�� Our view

is that we are not interested in strictness or termination abstractions of the evaluation

CHAPTER
� HIGHER	ORDER ANALYSIS ���

function� only of the data�dependency function	 this is fundamental to our approach�

The data�dependency function may be strongly dependent on the forward part of the

environment� For example� let appto� be short for
g
Int��T�g � for some type T�

and let the environment type E be Int��T� containing a single entry for a variable f�

Then the data�dependency function of appto� f is

gf � dataT � ES�� appto� f �� � unfacInt��T � �d �
d � f �

� �d �dataT
f
lift ��� �

where gf is parameterised by the forward part f of the value associated with f� For

strictness analysis we seek a BSA of
gf ��	 if we know nothing about f we may

safely take this BSA to be the lub� over all f � of the least BSA of
gf ��� This

would still reveal that appto� is strict in its argument� Thus the dependency of the

data�dependency function on the forward part of the argument will give �exibility in

the use of the analysis semantics developed� it will be possible to determine
using

Burn�s terminology� both �context free and �context sensitive information� that

is� information valid across all arguments as well as more precise information when

something is known about the argument or range of arguments� In other terms�

this will allow the analysis semantics to form the basis of both monovariant and

polyvariant analysers�specialisers�

	���� Factored semantics

To clarify some subtle points we de�ne an expression semantics ED such that ES is

the homomorphic image of ED under the unfactorisation� Precisely� for expression

e
T with environment type E we require

ES�� e �� � unfacE � unfacT � E
D�� e �� �

then

dataT � ES�� e �� � unfacE � dataT � unfacT � E
D�� e �� �

so

dataT � ES�� e �� � unfacE � 	� � ED�� e �� �

which implies

dataT � ES�� e �� � unfacE � �d �
d � f � � 	� � ED�� e �� � �d �
d � f � �

so that ED faithfully describes the data�dependency behaviour of ES�

CHAPTER
� HIGHER	ORDER ANALYSIS ���

Let RSD�� T �� be the continuous function unfacT regarded as a relation� Then the

condition is

RSD�� E ���RSD�� T ���
ES�� e ��� ED�� e ��� �

so we need to de�ne D constants that are similarly related to the S constants� An

easy way to do this would be to de�ne ED�� e �� to be facT � E
S�� e �� � unfacE	 this could

be done by similarly de�ning each D constant in terms of its S counterpart� yielding

the smallest constants and expression semantics satisfying the relation� This will not

do because we wish to express the D de�ning constants in terms of the D� constants

in such a way that the de�ning constants
except �x� for the higher�order semantics

EG� for all G� are de�ned in terms of their zero�order counterparts in the same way	

the resulting D constants will not be least�

The functionality of the G� constants� for all G� are implicitly extended to include

function types T� �� T�	 in all respects function types are treated exactly like the unit

type� The parameterised de�ning constants� except for mkfun� inci � outci � choose�

and �x � are de�ned as follows�

mkunitG
d � f � �
mkunitG� d �
�� �

mkintGi
d � f � �
mkintG�i d �
�� �

plusG

d��
���
d��
��� �
plusG�
d�� d���
�� �

tupleG

d�� f��� � � � �
dn � fn�� �
tupleG�
d�� � � � � dn��
f�� � � � � fn�� �

selGi
d � f � �
selG�i d � 	i f � �

It is simple to verify that D instances of these de�ning constants are correctly related

to their S counterparts�

Since the data domain for T� �� T� is the same as for ��� the data component of the

result of mkfunD is generated by mkunitD� �

mkfunG
h�
d � f �� �
mkunitG� d � h� �

applyG
d � f � � f �

The interesting constant is chooseD� It could simply be de�ned by

chooseD

d�� f��� � � � �
dm � fm�� �
chooseD�
d�� � � � � dm��

chooseDz
d�� f�� � � � � fm�� �

where

chooseDz
�� f�� � � � � fm� � � �

chooseDz

i � v�� f�� � � � � fm� � fi �

CHAPTER
� HIGHER	ORDER ANALYSIS ���

It is clear that chooseD de�ned in this way is correctly related to chooseS� However� a

di�erent form of the de�nition will be required to be able to de�ne the other instances

of choose in the same way� In view of this chooseG and chooseGz are expressed as

functions CHOOSEG�� T �� and CHOOSEGz �� T �� of the result type T� de�ned by

CHOOSEG�� T ��

d�� f��� � � � �
dm � fm�� �
chooseG�
d�� � � � � dm��

CHOOSEG
z �� T ��
d�� f�� � � � � fm�� �

where

CHOOSEGz �� Int ��
d � f�� � � � � fm� �
� �

CHOOSEGz �� �T�� � � � �Tn� ��
d � f�� � � � � fm�

�
CHOOSEG
z �� T� ��
d � 	� f�� � � � � 	� fm��

���

CHOOSEG
z �� Tn ��
d � 	n f�� � � � � 	n fm�� �

CHOOSEGz �� c� T� � � � � � cn Tn ��
d � f�� � � � � fm�

�
CHOOSEG
z �� T� ��
d � 	� f�� � � � � 	� fm��

���

CHOOSEG
z �� Tn ��
d � 	n f�� � � � � 	n fm�� �

CHOOSEGz �� T� �� T� ��
d � f�� � � � � fm�

� �x � CHOOSEG�� T� ��

d ���� f� x � � � � � fm x � �

We need to show that the two de�nitions of chooseD are equal� that is� that

CHOOSEDz �� T ��
�� f�� � � � � fm� � � �

CHOOSEDz �� T ��

i � v�� f�� � � � � fm� � fi �

for all T� For �nite types this may be shown by induction on type structure� For

recursively�de�ned types the �rst equation holds by straightforward �xed�point in�

duction	 the problem with the second equation is that it does not in general hold for

any �nite approximation of CHOOSEDz �� T ��� It is not hard to see that the equation

holds for all �nite fi � and hence holds for in�nite fi since CHOOSE
D
z �� T �� is continuous�

and equality is
jointly� inclusive in both arguments�

Recall that

unfacc� T� � ��� � cn Tn

��
f�� � � � � fn�� � � �

unfacc� T� � ��� � cn Tn

i � lift d��
f�� � � � � fn�� �
i � lift
unfacTi
d � fi��� �

so incDi may be de�ned to be the D instance of

incGi
d � f � �
incG�i d �
x�� � � � � xi��� f � xi��� � � � � xn��

CHAPTER
� HIGHER	ORDER ANALYSIS ���

for any choice of the xi � Rather than choose arbitrary values we de�ne the xi in terms

of a new family of constants botG� � T G� �� T ��� implicitly indexed by type T�
Later

we will show that botG� can be de�ned in terms of the other constants�� We take xi

to be BOTG
z �� Ti ��� where BOT

G is de�ned by

BOTG�� T �� � T G�� T �� �

BOTG�� T �� �
botG� � BOTG
z �� T ��� �

and

BOTG
z �� T �� � T Gz �� T �� �

BOTG
z �� Int �� �
� �

BOTG
z �� �T�� � � � �Tn� �� �
BOTG

z �� T� ��� � � � �BOT
G
z �� Tn ��� �

BOTG
z �� c� T� � � � � � cn Tn �� �
BOTG

z �� T� ��� � � � �BOT
G
z �� Tn ��� �

BOTG
z �� T� �� T� �� � �x � BOTG�� T� �� �

Here botD� � BOTD�� T ��� and BOTD
z �� T �� are � for all T� We may write botG for

BOTG�� T �� and botGz for BOTG
z �� T �� when the type T is understood�

We de�ne outcGi by

outcGi
d � f � � chooseG

d � f ��
d �� f ��� � � � �
d �� f ���

where

d �� f �� �
outcG�i d � 	i f � �

The function chooseG is used here to make outcDi strict in its �rst argument�

Constant �xS is least �xed point� and RSD�� T ��
���� for all T� so we take

�xD � lfp �

Proposition ���

The S and D de�ning constants are correctly related� hence so are ES and ED� �

We could leave it at this� but it is possible to simplify outcGi � and to simplify chooseG

in special but useful cases� Recall that we do not actually require that the de�ning

constants be related� only that the semantics be related�

We rede�ne outcGi by

outcGi
d � f � �
outcG�i d � 	i f � �

So de�ned outcDi is not correctly related to outcSi exactly when the constructor c

is the innermost enclosing an unboxed function type� consider the simplest example

CHAPTER
� HIGHER	ORDER ANALYSIS ���

lam �T� �� T��� We have � related to
�� f� by RSD�� lam �T� �� T�� �� for all f � but

outlamS � � � is related to
outlamD� �� 	� f� �

�� f� by RSD�� T� �� T� �� only

when f is �� The �rst de�nition gave a correctly related constant by using chooseD to

make outcDi strict in its �rst argument� Inspection of the generic expression semantics

shows that this is redundant since constant outci only arises in the semantics of case

expressions	 there will always be an enclosing chooseD that is strict in the same value�

We conclude that though the new de�nition of outcDi is not correctly related to outcSi �

the ES and ED semantics are still correctly related�

Next we consider chooseG� When the result type is such that any instance of T� �� T�

is enclosed by a constructor� for example pp �T� �� T��T� �� T��
and in particular

when T� �� T� appears only as T� �� T��	 or when all of the branches of chooseG have

the same value
in particular as the result of translating seq e� e� or decomposing a

unary sum� for example T� �� T��� we de�ne chooseG by

chooseG

d�� f���
d�� f��� � � � �
d�� f��� �
chooseG�
d�� d��� f�� �

If d� is not � the two de�nitions give the same result� When d� is � we have

chooseD

�� d��� f�� �
�� f�� �

and

chooseD�
�� d��� choose
D
z
�� f��� �
���� �

For all such restricted types T and for all f � T Dz �� T �� we have unfacT
�� f� � ��

Proposition ���

The semantic functions ES and ED are correctly related� �

Finally� we give a general de�nition of botG� � botGz � and botG in terms of �xG� it is

botG � �xG id � botG� � 	� botG� and botGz � 	� botG� Note that this is consistent

with the earlier de�nitions of the D instances of these constants� Now all of the

higher�order constants are de�ned in terms of the zero�order constants and �x � We

have given the de�nition of botD� before �xD because for other instances of �xG it

will be convenient to de�ne the corresponding instance of botG� �rst�

In partial summary we give the semantics of the source languages directly�

EG�� xi ��
d � f � � selGi
d � f � �
selG�i d � 	i f � �

EG�� �� ��
d � f � �
mkunitG� d �
�� �

EG�� ni ��
d � f � �
mkintG�i d �
�� �

CHAPTER
� HIGHER	ORDER ANALYSIS ���

EG�� e� � e� �� � �
plusG�
d�� d���
��

where

di �
�� � EG�� ei �� �� i � �� � �

EG�� �e�� � � � �en� �� � �
tupleG�
d�� � � � � dn��
f�� � � � � fn�� �i
 ��

where

di � fi� � EG�� ei �� �� � 	 i 	 n �

EG�� let �x�� � � � �xn� � e� in e� �� �

� EG�� e� �� ��xi �� selGi
EG�� e� �� �� j � 	 i 	 n� �

EG�� ci e �� � �
incG�i d �
botGz � � � � � bot
G
z � f � bot

G
z � � � � � bot

G
z �� �f in ith position�

where

d � f � � EG�� e �� � �

EG�� case e� of c� x� �� e�	 � � � 	 cn xn �� en �� �

� chooseG
EG�� e� �� ��

EG�� e� �� ��x� �� outcG�
EG�� e� �� ����
���

EG�� en �� ��xn �� outcGn
EG�� e� �� ����

where

outcGi
d � f � �
outcG�i d � 	i f � �

EG��
�x�e ��
d � f � �
mkunitG� d � �x �EG�� e ��
d � f ��x �� x �� �

EG�� app� e� e� �� � � f
EG�� e� �� ��

where

d � f � � EG�� e� �� � �

EG�� fix� e �� � � �xG f

where

d � f � � EG�� e �� � �

From these� and the simpli�cations given� we have the following�

EG��
x�e ��
d � f � �

inlamG� �mkunitG�� d � �x �EG�� e ��
d � f ��x �� x �� �

EG�� e� e� �� � �
chooseG�
d�� d��� f��

where

d�� f�� � EG�� e� �� �

d�� f�� � f�
EG�� e� �� �� �

CHAPTER
� HIGHER	ORDER ANALYSIS ���

EG�� seq e� e� �� � �
chooseG�
d�� d�� � � � � d��� f��

where

di � fi� � EG�� ei �� �� i � �� � �

EG�� fix e �� � �
chooseG�
d�� d��� f��

where

g�� h�� � EG�� e �� �

g�� h�� � �xG h� �

��	 Data�dependency semantics

For all G� we have de�ned T G and all of the de�ning constants for EG except �xG�

but given no indication of how they should be related� We use the higher�order

data�dependency semantics N as the motivating example�

Just as the N� semantics abstracted the dependency of the standard value of every

subexpression on the value of the environment� the N semantics will abstract the

dependency of the data part of the standard value on the data part of the environment�

The latter is a generalisation of the former since at zero order a value and its data

part are the same�

Let Egl be the type of global environments� and let e
T have environment type E�

Let g be a function from the data parts of global environments to the data parts of

environments for e� so g � T D� �� Egl �� � T D� �� E �� � T N��� E ��� Let standard forward

value f � T Dz �� E �� be �xed� and let g� be de�ned by

g � � T D� �� Egl �� � T D��� T �� � T N��� T �� �

g � � 	� � E
D�� e �� � �d �
d � f � � g �

By analogy with the relation between the D� and N� semantics� we expect that for

value h appropriately related to f to have

g �� h �� � EN�� e ��
g � h� �

for some h �� so that when g is the identity g � is precisely the data�dependency function�

that is�

g � � 	� � ED�� e �� � �d �
d � f � �

Next we make this relation precise�

Let
d� f� � T D�� T �� and
g� h� � T N�� T ��� Then
d� f� is related to
g� h� if for a

given data part of a global environment � � T D� �� Egl �� we have d � g �� that is

CHAPTER
� HIGHER	ORDER ANALYSIS ���

RD�N�
� �� T ��
d� g�� and f and h are logically related� Thus the relation is a function of

type� Following we de�ne the relation RGH in terms of RG�H� for all combinations of

G and H for which RG�H� has been de�ned�

For predicate environments � and domain environments �G and �H such that for each

type name A�

��� A �� �
�G�� A �� � �H�� A ���
i
� Truth �

we will have

RGH�� T �� � �

T G�� T �� �G� �
T H�� T �� �H��
i
� Truth

and

RGH
z �� T �� � �

T Gz �� T �� �G� �
T Hz �� T �� �H��

i
� Truth �

De�ne RGH by

RGH�� T �� � � RG�H��� T �� �
RGH
z �� T �� �� �

Note that the type de�nitions D must be �xed because RG�H� is implicitly de�ned in

terms of D� The logical part of the relation is

RGH
z �� Int �� � � �bf �True �

RGH
z �� �T�� � � � �Tn� �� � �
RGH

z �� T� �� �� � � � � �
RGH
z �� Tn �� �� �

RGH
z �� c� T� � � � � � cn Tn �� � �
RGH

z �� T� �� �� � � � � �
RGH
z �� Tn �� �� �

RGH
z �� T� �� T� �� � �
RGH�� T� �� �� �
RGH�� T� �� �� �

We de�ne RGH
defns in terms of RGH

z � Let

�i �
����Ai �� Rz�� Ti �� � j � 	 i 	 n��i �� �

where

�� � �Ai �� Rz�� �� �� � � j � 	 i 	 n� �

Let pi � �i�� A �� for i
 �� then pi �
�Gi � �Hi �
i
� Truth is a binary predicate on the ith

canonical approximating domains for T Gz �� A �� and T Hz �� A ��� and pi � pi�� �

Gi �
Hi �

and pi�� � pi �
�Gi � �Hi �� where

Gi � �
G
i � � �Gi �� A �� � �Gi���� A �� are the canonical

retraction pairs in the inverse limit construction of T Gz �� A ��
and similarly for the

H versions�� Hence fpi j i
 �g is a family of approximating predicates with limit

RGH
defns �� D ���� A �� which is the least inclusive predicate greater than RGH

z �� �� �� �
�G�� �

�H����

Just as for the other semantic functions we write RGH�� T �� and RGH
z �� T �� as abbrevia�

tions for RGH�� T ��
RGH
defns �� D ��� and R

GH
z �� T ��
RGH

defns �� D ���� respectively�

CHAPTER
� HIGHER	ORDER ANALYSIS ���

Proposition ���

For all T the predicates RGH�� T �� and RGH
z �� T �� are inclusive when RG�H��� T �� is�

This follows from the de�nition of these predicates in terms of the predictor tuples

and recursion as developed in Section ������ �

Like the relation between D� and N� values the relation between D and N values
and

therefore S and N values� is parameterised by a value �	 as before this is indicated by

subscript� so

RDN
� �� T �� � RD�N�

� �� T �� � RDN
z�� �� T �� �

and each instance of RDN and RDN
z in the de�nition has the same subscript� so �

is e�ectively global over the de�nition� Then the relation RSN
� �� T �� between S and N

values is the relational composition of RSD�� T �� and RDN
� �� T ��	 this relation is inclusive

since RSD�� T �� is the continuous function unfacT regarded as a relation�

	���� Semantics of expressions

Proposition ��	

If the constants de�ning zero�order expression semantics EG� and EH� are related by

RG�H� � and �xG and �xH are related by RGH� then EG is related to EH by RGH�

Proof

We need to show that the higher�order constants other than �x are related by RGH�

For constantsmkunit � mkinti � outci � tuple� sel � mkfun� and apply veri�cation is simple�

The interesting cases are inci because it is de�ned in terms of �x � and choose because

it is recursively de�ned� Recall

incGi
d � f � �
incG�i d �
botGz � � � � � bot
G
z � h� bot

G
z � � � � � bot

G
z �� �

and botGz � 	�
�xG id�� and similarly for the H versions� Now �x �
T �� T �� �

T �� T ��� � T �� T ��� and
id � id� satis�es RGH�� T �� � RGH�� T ��� so
�xG id � �xH id�

satis�es RGH�� T ��� so
	�
�xG id�� 	�
�xH id�� satis�es RGH
z �� T ��� The remaining

veri�cation is simple�

For choose we need to show that
CHOOSEG�� T� ���CHOOSE
H�� T� ��� satis�es

RGH�� T� �� � RGH�� T� �� � � � � � RGH�� T� ��� � RGH�� T� �� �

which holds if
CHOOSEGz �� T� ��� CHOOSE
H
z �� T� ��� satis�es

P � Q � � � � � Q� � Q

CHAPTER
� HIGHER	ORDER ANALYSIS ���

where P is RGH�� T� �� and Q is RGH
z �� T� ��� This predicate is equal to

F
i��

P � Q � � � � � Q� � qi� �
id � ��i� �

where ��i � �G�i � �H�i and the �G�i and �H�i are the canonical projections in the

inverse limit construction of T Gz �� T� �� and T Hz �� T� ��� respectively� and qi is the i th

canonical approximation of Q � In fact
CHOOSEGz �� T� ��� CHOOSE
H
z �� T� ��� satis�es

the much stronger condition

F
i��

P � qi � � � � � qi� � qi� �

id � ��i � � � � ��i� � ��i� �

which can be shown by induction on the structure of T�� �

Finally we need to de�ne �xN� Now botD� � �� and we de�ne botN� to be �x�� so

that RD�N�
� �� T ��
botD� � botN�� holds for all T and �� and botN � �� So� like �xD we

de�ne �xN to be least �xed point�

Proposition ���

The D and N semantics are correctly related� �

	���� Implications of the relation

Let e
T with environment type E and global environment type Egl � Writing out the

required relation between ED�� e �� and EN�� e �� gives

�� � RDN
� �� E ��

d � f ��
g � h�� � RDN

� �� T ��
ED�� e ��
d � f �� EN�� e ��
g � h�� �

which is equivalent to

�� �
d � g � � RDN
z�� �� E ��
f � h�� �
d � � g � � � RDN

z�� �� T ��
f �� h ��� �

where
d�� f �� � ED�� e ��
d� f� and
g�� h�� � EN�� e ��
g� h�� Suppose that f and h are

related by RDN
z�� �� E �� for all data parts of global environments � � T D��� Egl ��� Then

for all functions g � T N� �� E �� from the data parts of global environments to the data

parts of local environments we have

�� � RDN
� �� E ��

g �� f ��
g � h�� �

Then it must be that ED�� e ��
g �� f� is related to EN�� e ��
g� h� by RDN
� �� T �� for all

�	 in particular for
g�� h�� � EN�� e ��
����� h� it must be that g� � dataT � E
S�� e �� �

unfacE � �d�
d� f�� that is� g
� is the desired data�dependency function�

Let a value v � T G�� T �� in a given semantics G be denotable if there exists a closed

expression e such that v � EG�� e �� � �� There is no trouble �nding such h for deno�

table values� empty environments � �S �

��
�� and � �N �
���
��
�� are related by

CHAPTER
� HIGHER	ORDER ANALYSIS ���

RSN
� �� �� �� for all �� so for all e
T with
d� f� � ED�� e �� � � and
g� h� � EN�� e �� � � we

have
d� f� related to
g� h� by RSN
� �� T ��� hence f related to h by RSN

z�� �� T ��� for all ��

Before giving a general mapping of each f to such h we give some simple examples�

For zero�order types f and h necessarily come from domains isomorphic to �� For �rst�

order types h is �
g � u��
f � g ��� where argument u is necessarily � from a domain

isomorphic to �	 more generally for type T��� � � � ��Tn � where the Ti are zero�order

types� h is

�
g�� u��
���lift
��

�
g�� u��
���lift
��
���

�
gn��� u��
���lift
��

�
gn � u��
f � gn � � � � � g�� ��� � � ��� �

where all of the arguments u come from domains isomorphic to ��

Now we de�ne the general mapping of each value f � T Dz �� T �� to a value h � T Nz �� T ��

related byRDN
z�� �� T �� for all �� and more generally� from values
d� f� � T D�� T �� to values

g� h� � T N�� T �� related by RDN
� �� T �� for all �� To make this work we �strengthen the

hypothesis�
we give a mapping of such
d� f� to such
g� h� satisfying the stronger

property R�SN�� T ��� where R�SN is the "S�N� instance of RGH� de�ned by

R�S�N� �� T ��
d � g� � �� � d � g � �

At each type T we de�ne two pairs of functions EM and PR � and EMz and PRz� such

that for � a function from type names to pairs of functions with

��� A �� � �D�� A �� � �N�� A �� �

for each type name A� we have

EM �� T �� �� PR �� T �� �� �
T D�� T �� �D� �
T N�� T �� �N� �

and

EMz�� T �� �� PRz�� T �� �� �
T Dz �� T �� �D� �
T Nz �� T �� �N� �

for all T� We take EMz�� A �� � � 	�
��� A ��� and PRz�� A �� � � 	�
��� A ���� Eliding the

function environment as usual de�ne

EM �� T ��
d � f � �
���d � EMz�� T �� f � �

PR �� T ��
g � h� �
g �� PRz�� T �� h� �

and

EMz�� Int �� � �
��
� �

CHAPTER
� HIGHER	ORDER ANALYSIS ���

EMz�� �T�� � � � �Tn� �� � EMz �� T� �� � � � � � EMz�� Tn �� �

EMz�� c� T� � � � � � cn Tn �� � EMz�� T� �� � � � � � EMz�� Tn �� �

EMz�� T� �� T� �� � PR �� T� �� � EM �� T� �� �

and

PRz�� Int �� � �
��
� �

PRz�� �T�� � � � �Tn� �� � PRz�� T� �� � � � � � PRz�� Tn �� �

PRz�� c� T� � � � � � cn Tn �� � PR�� T� �� � � � � � PR�� Tn �� �

PRz�� T� �� T� �� � EM �� T� �� � PR �� T� �� �

Given type de�nitions D� environment �D is determined by its family of approximations

f�ig� de�ned by

�i �
����
EMz�� Ti �� �� PRz�� Ti �� �� j � 	 i 	 n��i �� �

where

�� � �
EMz�� �� �� � �� PRz�� �� �� � �� j � 	 i 	 n� �

Proposition ���

The pairs
EM �� T �� �D�PR�� T �� �D� and
EMz�� T �� �D�PRz�� T �� �D� are retraction pairs�

and RDN
� �� T �� �D
v� EM �� T �� �D v� for all v and �� and RDN

z�� �� T �� �D
f� EMz�� T �� �D f�

for all f and �� where �D � RDN
defns �� D ���

Sketch Proof

The proof that the pairs of functions form retraction pairs is similar to the proof

that facT and unfacT form a retraction pair� To show the relation between f and

EMz�� T �� �D f � and between v and EM �� T �� �D v� we observe that for all i and T that

EMz�� T �� �i is equal to EMz�� T� �� � � for some T�
and similarly for EM � PRz� and PR��

and the result holds for all closed types T�� �

	���� Examples

We give some examples of calculations using the N semantics�

Example� Given zero�order expression e
T with zero�order environment type E�

function g � T N��� E ��� for

g ��
�� � EN�� e ��
g �
�� �

we have g� � EN��� e �� g� so the N� semantics is just a special case of the N semantics�

CHAPTER
� HIGHER	ORDER ANALYSIS ���

Example� First�order function de�nition f x � e is rewritten as fix �
f�
x�e�

with the implicit translation of �rst�order application form f e to the higher�order

application form f e� Let

g � h� � EN�� fix �
f�
x�e� �� � � �

Then g � ���lift
�� which indicates that this expression has WHNF regardless of the

environment� and function h can be expressed in the form �
g �
���
h � g �
�� where

function h � is the value of the function de�nition in the N� semantics� This generalises

in a straightforward way to sets of �rst�order function de�nitions� given

f� � T� �� U�

f� x � e�
���

fn � Tn �� Un

fn x � en

let e be the expression

fix �
f�let �f������fn� � f in �e������en��

then for
g� h� � EN�� e �� � � the function g is ���
lift
�� � � � � lift
�� and h is a tuple

h�� � � � � hn� of functions like h above� We conclude that the N� semantics is a special

case of the N semantics�

Example� We give two examples involving chooseN� For clarity lifting of integers

is implicit and "Int is written "� Let e be the expression

�x � case b of

true u �� x
 �

false u �� x
 �

with environment type Bool� Then EN�� e �� �b ��
gb�
��� is

���lift
��

�
gx �
�� � choose
N
Int

gb�
���

�y �y " �� � gx �
���

�y �y " �� � gx �
���� �

The �rst component indicates that e has WHNF in all environments� The second

component is

�
gx �
�� �
�� � case gb � of

� � �

�� v� �
�y �y " �� � gx

�� v� �
�y �y " �� � gx �

�� �

CHAPTER
� HIGHER	ORDER ANALYSIS ���

To contrast� let e now be

case b of

true �� �� �x�x
�

false �� �� �x�x
�

then EN�� e �� �b ��
gb�
��� is

chooseNInt��Int

gb�
���

���lift
�� �
gx �
���

�y �y " �� � gx �
���

���lift
�� �
gx �
���

�y �y " �� � gx �
����

�
chooseN�
gb� ���lift
�� ���lift
���

CHOOSENz �� Int��Int ��
gb�

�
gx �
���

�y �y " �� � gx �
���

�
gx �
���

�y �y " �� � gx �
���� �

the �rst component of which is

�� � case gb � of

� � �

�� v� � lift
�

�� v� � lift
� �

indicating that the expression has WHNF if variable b is de�ned	 the second compo�

nent is the same as before� This shows that the expressions are operationally di�erent

if simply evaluated� but equivalent if applied�

Example� Here we show the N value of a closed expression denoting a list of func�

tions�

EN�� fcons �
x�x��� fcons �
x�x��� fnil ���� �� � �

�
�� � lift
� � lift
� � � ��

��
�
g �
�� �

�x �x " �� � g �
���

��
�
g �
�� �

�x �x " �� � g �
���

��
��

� �������

	���� Lifted data�dependency semantics

The N semantics yields the data�dependency functions� and for binding�time analysis

it is forward strictness abstractions of these functions that we require� For strictness

analysis and termination analysis� however� we require abstractions of the lifts of the

data�dependency functions�

CHAPTER
� HIGHER	ORDER ANALYSIS ���

There is little to be gained by repeating the entire development of domain factorisation

and the factored semantics in �lifted� form	 we give the important points� Recall

T S��� T �� ��
T S�� T ���� for all T� in e�ect values from the lifted semantics have one

more outermost lifting than their counterparts in the standard semantics� so the data

domain T D�� �� T �� for type T corresponding to the lifted semantics T S� should be

isomorphic to
T D� �� T ����� which is the case� Thus the data domains for the lifted

semantics encode the extra level of lifting� and for e
T with environment type E the

data�dependency function comes from T D�� �� E ��
sb
� T D���� T ��� that is� from T N�� �� T ���

Not only is T N�� �� T �� isomorphic to T N��� T ��� and the N� and N�� constants
and

hence EN� and EN��� equal up to isomorphism� but their respective argument and

result domains are isomorphic as well� The same holds at higher order� T N��� T �� is

isomorphic to T N�� T �� for all T� and by de�ning �xN� to be least �xed point� the N

and N� constants
and hence EN and EN�� are equal up to isomorphism� and their

respective argument and result domains are also isomorphic� The isomorphism from

T N�� T �� to T N��� T �� is induced by the isomorphism from T N� �� T �� to T N���� T ��
the

mapping of data�dependency functions g to their lifts g���

��
 Strictness Analysis

We need only de�ne �xB� Recall that botN�� is �x�lift �� the least value in T N���� T ��

at each T� We de�ne botB� to be ����BOT�� the least BSA of botN�� and the least

element in T B� �� T �� at each T� Hence botB� like botN�� is the least value in its domain�

and we take �xB to be least �xed point�

Proposition ���

The N� and B semantics are correctly related� �

For every N� value there is always a related B value� namely the top value� Better�

there is always a least related B value	 the essential facts are that the data�dependency

�rst� components of N� values have least BSAs� glb is componentwise for products�

and glb is pointwise for functions� Since the mapping of N� values to least related B

values is not in general monotonic� it is not clear that the least value in T Bz �� T� �� T� ��

correctly related to a given value in T Nz �� T� �� T� �� is pointwise least because values

in T Bz �� T� �� T� �� are necessarily monotonic�

At zero order we showed �rst that for all e that EB��� e �� � is the least value correctly

related to
that is� is the least BSA of� EN�� �� e �� g when � is the least value correctly

related to
is the least BSA of� stable function g� Using this result we were able to

CHAPTER
� HIGHER	ORDER ANALYSIS ���

show a stronger second result� that EB� �� e �� is the pointwise least function correctly

related to EN��� e ��� We show a straightforward generalisation of the �rst result to

higher order� but do not attempt to give a generalisation of the second�

Let T N
s
�� �� T �� be T N�� �� T �� restricted to stable functions� and T N

s
� be the Ns�� instance

of T G� Let v on T N
s
��� T �� be the standard ordering and vs� be the ordering induced

by taking the ordering on stable function spaces to be the stable ordering� Then vs�

is stronger than the standard ordering� chains ascending in the stronger ordering are

ascending in the standard ordering and have the same limits in both orderings� The

mapping of Ns� values to least related B values is injective� and is continuous when

the ordering on Ns� values is vs�� in other words� the leastness property is inclusive

in the stronger ordering�

The Ns� domains are closed under the N� constants� and the constants are continuous

in the stronger ordering� hence the Ns� domains are closed under EN��� e �� for all e�

and in particular all denotable values are in the Ns� domains�

The result is the following� Given e
T with environment type E� value �N
s
� � T N

s
��� E ���

and least correctly related value �B � T B�� E ��� we have that EB�� e �� �B is the least value

correctly related to EN��� e �� �N
s
�	 this follows from the fact that the corresponding

result holds for each N� constant�

Finally� we observe that if we restrict attention to denotable values then the function

space T Bz �� T� �� T� �� � T B�� T� �� � T B�� T� �� may be restricted to the distributive

functions�

	���� Relation between S and B semantics

Let Egl be the type of global environments� Suppose that f � T Dz �� E �� and h � T Nz �� E ��

such that RDN
z�� �� E ��
f� h� for all � � T D� �� Egl ��� Then for g � T N� �� E ��� and
g�� h�� �

EN�� e �� for e
T with environment type E we have that

g � � dataT � ES�� e �� � unfacE � �d �
d � f � � g �

and when g is the identity� g� is the data�dependency function� The isomorphism

from T N��� E �� to T N���� E �� maps each g to g��	 slightly abusing the notation� let h��

be the image of h under the induced isomorphism from T Nz �� E �� to T N�z �� E ��� Then

g ���� �
h
����� � EN��� e ��
g��� h��� �

so when g� and therefore g��� is the identity� the function
g���� is the lift of the data�

dependency function� Now if
�� �� � T B�� E �� is correctly related to
g��� h���� then

for
� �� ��� � EB�� e ��
�� �� we have that
� �� ��� is correctly related to

g�����
h
������

CHAPTER
� HIGHER	ORDER ANALYSIS ���

In particular� when g is the identity� g�� is then identity with least BSA the identity

����� and � � is a BSA of the lift of the data�dependency function�

	���� Examples of analysis

Example� Given zero�order expression e with zero�order environment type E�
sta�

ble� function �N�� � T N�� �� E ��� and � a
least� BSA of �N�� � for � � de�ned by

� ��
�� � EB�� e ��
��
�� �

we have that � � is a
least� BSA of ES�� �� e �� � �N�� � Also� � � is equal to EB� �� e �� � � so

the zero�order analysis is a special case of the higher�order analysis�

It is also straightforward to show that the second approach to �rst�order analysis is

a special case of the higher�order analysis	 the demonstration is essentially the same

as that of the analogous result for the N� and N semantics�

Example� Suppose any is any closed expression of type T� �� T�� and we wish

to determine the strictness properties of the function denoted by any� To do this

we introduce a variable x
T� and determine the strictness properties of ES�� any x ���

where the environment is taken to have a single entry for x and therefore have type

T�� Let any be de�ned by

any � ES�� any x �� � �x � ES�� any x �� �x �� x � �

We determine a BSA of the lift of

�d �
	� � E
D�� any x ��� �x ��
d � f ��

assuming that nothing is known about f � For all values f � T Dz �� E �� there is a value

h � T Nz �� E �� such that f is related to h by RDN
z�� �� E �� for all �� and every value h�� is

correctly related to value � � T Bz �� E ��� Hence we take the B value of x to be
��������

Let

�� �� � EB�� any x �� �x ��
�������� �

Then any is strict if � STR v STR� head strict if � ID v ABS t
FINF STR�� and

so on� This procedure can be streamlined� We have

EB�� any x �� �B �
��� �
�any LAM � &
�y ���� �y�

where

�any� �any� � EB�� any �� � �

�y� �y� � �any
EB�� x �� �B� �

CHAPTER
� HIGHER	ORDER ANALYSIS ���

If any is of the form
x�e� then �any is ���ABS � and the expression simpli�es to

�any
��������

If any were
x�
y�x then � would be ���ABS � indicating that any is not strict� it

always returns something that evaluates to WHNF� In an implementation in which

functions are only
necessarily� evaluated when applied we would like to regard any

as being strict� This may be determined by abstractly applying any to all of its

arguments� in general if any has type T��������Tn��� let the value of xi � Ti be in

position i of environment �B of type �T�� � � � �Tn� with value �B �
������� so that

�B�� xi �� �
���ABS � � � �� ABS � �� ABS � � � �� ABS � ��

�� in ith position�

then for � and � de�ned by

�� �� � EB�� any x� ��� xn �� �
B

if � maps projection STR to projection � and

� v ID � � � �� ID � STR � ID � � � �� ID �STR in the ith position�

then any is strict in its ith argument�

Example� Let �o� be short for
f�
g�
x�f �g x�� let id be short for
x�x� let

funfoldr be short for

fix ��funfoldr �

�f � �a � �fs � case fs of

fnil �� �� a

fcons �g�gs� �� f g �funfoldr f a gs�� �

and let compose be short for funfoldr �o� id� The function denoted by compose

maps lists of functions to the composition of the list elements� Folding right allows

the composition of partial or in�nite lists of functions to have non�bottom values�

Then

EB�� compose �fcons �
x�x��� fcons �
x�x��� fnil ����� ��

is equal to EB��
x�x�� ��	 the point is� there are no surprises because the B semantics

loses no information present in the standard semantics�

Now let

�fs� �fs� � EB�� fcons �
x�x��� fcons �
x�x��� fnil ���� �� � � �

Then �fs � ���ABS and �fs is the abstract forward value of the list of functions�

Next we determine strictness of compose fs x in both fs and x when fs has the

value of the given list of functions� so we �nd a BSA of the lift of

�
dfs� dx� � ED�� compose fs x ��

dfs� dx��
f fs�
��� �

CHAPTER
� HIGHER	ORDER ANALYSIS ���

when the forward part f fs of the list argument is the given list of functions� Let �B �

�����
�fs�
��� so that �B�� fs �� �
���
� � ABS �� �fs� and �B�� x �� �
���
ABS �

���
��� and let � be de�ned by

��
�� � EB�� compose fs x �� �B �

Then � is determined by the mappings

Ni ��
FCONS
LAM �
FCONS
LAM � FNIL���� � Ni��� all i �

Because all of the functions in the list are strict� argument x and the entire

list fs and all of its elements may be evaluated if the result is� If fs had

the value of fcons �
x��� fcons �
x�x��� fnil ��� then � would map N� to

FCONS
LAM � ABS��� ABS and Ni to FAIL for i �� ��

Example� We consider the strictness properties of application in both of its argu�

ments when the actual values of the arguments are unknown� If apply is
f�
x�f x

then we wish to determine the strictness of apply f x in f and x� Let the val�

ues of f and x be in the �rst and second positions of the environment� respec�

tively	 assuming nothing about the arguments we take �B to be
�������� so

�B�� f �� �
���
��ABS ���� and �B�� x �� �
���
ABS ������� Now EB�� apply f x ��

is just EB�� f x ��� and

EB�� f x �� �B �
����
�� LAM � &
�� ���� ���

where

��� ��� � EB�� f �� �B

��� ��� � ��
EB�� x �� �B� �

which simpli�es to

����
LAM � ID�� �� �

which shows that application is strict in its �rst argument�

	���� Abstraction

The abstract projection domains SProj T are extended to all types T by

PS�� �� T� �� T� �� � PS�� �� �� �� � j �� j � fID �BOTg �

Then SProj T���T� � j T S�� �� T� �� T� �� j � j ��� j � fID�� ID��BOT��BOT�g� other�

wise know as fLAM � ID �ABS �FAILg� The restriction of projection domains to SProj

induces abstract domains of projection transformers� just as at zero order	 abstract

CHAPTER
� HIGHER	ORDER ANALYSIS ���

domains of B values� denoted SAbsT at each type T	 and an abstraction of the B ex�

pression semantics� We conjecture that this abstract expression semantics determines

the standard semantics
as it does when restricted to zero or �rst order��

From each abstract domain SAbsT we choose a �nite subdomain FAbsT� First we

extend FProj T to function types by adding the inference rules

BOT� fproj T� �� T� � BOT� fproj T� �� T� �

Then FProj T���T� � SProj T���T� and FProj T���T� � SProj T���T� �

Given type Egl de�ne the abstract domain of projection transformers FTranT to be

FProj T
B
� FProj Egl � If T B

�
� �� T �� were de�ned to be FTranT then so long as recursive

types were not involved the higher�order abstract semantics could be taken to be

the B�
� instances of the parameterised semantics� For recursive types however these

abstract domains may not be �nite� for example for FunList� We take the abstract

domain FAbsT to be FTranT�FAbsFT� where FAbsFT is the �nite abstraction of T Bz �� T ��

de�ned by the following set of inference rules� value � is in FAbsFT if � fabsf T can

be inferred from the following�

There is only one forward value at type Int�

� fabsf Int �

For products�

�� fabsf T� � � � �n fabsf Tn

��� � � � � �n� fabsf �T�� � � � �Tn�
�

For the unit type this reduces to
� fabsf �� �

Since T Bz �� c� T� � � � � � cn Tn �� � T Bz �� �T�� � � � �Tn� �� the rule for sums is the same as

the rule for products�

�� fabsf T� � � � �n fabsf Tn

��� � � � � �n� fabsf c� T� � � � � � cn Tn
�

Function spaces consist of a set of step functions closed under lub�

�� � FTranT� �� fabsf T� �� � FTranT� �� fabsf T�

step

��� ����
��� ���� fabsf �T� �� T��
�

where

step
v�� v�� x � v�� if v� v x

step
v�� v�� x � �� otherwise �

and
�� fabsf �T� �� T�� �� fabsf �T� �� T��

�� t ��� fabsf �T� �� T��
�

CHAPTER
� HIGHER	ORDER ANALYSIS ���

This gives the full space of monotonic functions on the abstract domains�

For recursively�de�ned types� roughly speaking� we choose those forward values that

represent each component of the same type by the same value� Given type de�ni�

tions A� � T�	 � � � 	 An � Tn � which we will write Ai�Ti�A������An�� � 	 i 	 n� if by

assuming �i fabsf Ai for � 	 i 	 n we may deduce Pi
��� � � � � �n� fabsf Ti
A� � � � An�

for � 	 i 	 n� then

�
��� � � � � �n��
P�
��� � � � � �n�� � � � �Pn
��� � � � � �n��

is a tuple
��� � � � � �n� of values such that �i fabsf Ai for � 	 i 	 n�

For all T the lattice FAbsT is a sublattice of SAbsT which contains the top and bottom

elements of T B�� T ���

Example� For zero�order types T the abstract domain FAbsT is of the form

FTranT �D � where D is isomorphic to ��

Example� The abstract domain FAbsInt��Int is

FTranInt��Int � FAbsFInt��Int

where

FAbsFInt��Int �
FTranInt � �� �
FTranInt � �� �

Let the type Egl of global environments be Bool� and let e be

�x � case b of

true �� �� x
 �

false �� �� x
 �

with environment type Bool� Here

FTranInt��Int � FProj Int��Int
B
� FProj Bool �

FTranInt � FProj Int
B
� FProj Bool �

and EB�� e �� �b ��
�b�
��� is

�b � ���ABS �

�
�x�
�� � choose
B
Int

�b�
���
�����x STR�
���
�����x STR�
���� �

The second component is

�
�x�
�� �
��� �

�b TRUE � &
�x ���� t

�b FALSE � &
�x �����
�� �

CHAPTER
� HIGHER	ORDER ANALYSIS ���

For �b � ���� the �rst component simpli�es to ���ABS � indicating that no demand

is made on the environment in evaluating the expression to WHNF� and the second

component simpli�es to

�
�x�
�� �
����STR &
�x ����
�� �

Now let e be

case b of

true �� �� �x�x
�

false �� �� �x�x
�

then EB�� e �� �b ��
�b�
��� is

chooseBInt��Int

�b�
���

�b � ���ABS � �
�x�
���
�����x STR�
���

�b � ���ABS � �
�x�
���
�����x STR�
����

� chooseBInt��Int

�b�
���

���ABS � �
�x�
���
�x�
���

���ABS � �
�x�
���
�x�
����

�
chooseB�
�b� ���ABS � ���ABS��

CHOOSEBz �� Int��Int ��
�b� �
�x�
���
�x�
��� �
�x�
���
�x�
��� �

the �rst component of which is

��� �
�b TRUE � &
�b FALSE � �

which is safely approximated by �����b STR	 for �b � ���� it is just ����STR�

which maps ID to ID � STR to STR� ABS to ABS � and FAIL to FAIL� The second

component is the same as in the previous example�

Example� The abstract domain FProj FunList is isomorphic to FProj IntList� and

T Bz �� FunList �� � � �
T Bz �� Int��Int �� � T Bz �� FunList ��� �

so the values in FAbsFFunList are of the form ���

��
v � ��� for v � FAbsFInt��Int�

hence FAbsFFunList is isomorphic to FAbsFInt��Int� If we represent FAbsFFunList by

FAbsFInt��Int then the relevant constants are

infnilB
��
�� �
infnilB� �� �� �

outfnilB
�� �� �
outfnilB� ��
�� �

infconsB
��
��� ���� �
infconsB� ��
�� t ���� �

outfconsB
�� �� �
outfconsB� ��
�� ��� �

CHAPTER
� HIGHER	ORDER ANALYSIS ���

The projection transformer ����STR is a BSA of every lifted strict function� it has

the guard property and maps every eager projection other than FAIL to STR� When

the functions are in Int�
sb
� Int� and we are working in FProj this simpli�es to �����

For any closed expression f denoting a strict function� a safe approximation of the

second component of its B value is

�
�� �� �
����STR �B �� �� �

When f
Int��Int this simpli�es to �
��
���
��
��	 this value in FAbsFFunList is a safe

abstraction of all �nite� partial� and in�nite lists of strict functions� We have

EB�� compose fs �� �fs ��
����� �
��
���
��
����

�
����STR� �
��
���
��
��� �

In other words� compose maps all �nite� partial� and in�nite lists of strict functions

to a strict function� and evaluation of compose fs forces evaluation of fs to WHNF�

Now let

��
�� � EB�� compose fs x ��
�����
�
��
���
��
���
��� �

Now � is ����
FIN ID�� STR� which reveals that when fs is a list of strict functions

compose fs x is strict in the spine of fs and x� We might expect strictness in the

elements of fs but this information is lost because of abstraction	 performing the same

calculation in the full domains yields the expected ����
FIN STR�� STR� Just as

at zero order the loss of information may be regarded as arising from the particular

semantics of case expressions�

Example� Recall the type de�nition

FunTree � fleaf �Int �� Int� � fbranch �FunTree� FunTree� �

The eager elements of the t�basis of FProj FunTree comprise

II FAIL �

FF LAM �

IF LAM �

FI LAM �

FF ABS �

IF ABS �

FI ABS �

CHAPTER
� HIGHER	ORDER ANALYSIS ���

where

FF � � �� �
FLEAF �� t FBRANCH
� � �� �

FI � � �� �
FLEAF �� t FBRANCH
� �
ABS t ��� �

IF � � �� �
FLEAF �� t FBRANCH

ABS t ��� �� �

II � � �� �
FLEAF �� t FBRANCH

ABS t ���
ABS t ��� �

Now FAbsFFunTree is isomorphic to FAbsFInt��Int� so the abstraction of a forward value

of type FunTree must be a safe approximation of all of the leaves� The values in

FAbsFFunTree are of the form ���
v�
�� ��� for v � FAbsFInt��Int� and are represented

by values from FAbsFInt��Int�

Let treecomp be short for

fix ��treecomp �

�t � case t of

fleaf f �� f

fbranch �tl�tr� �� �o� �treecomp tl� �treecomp tr�� �

First we consider strictness of treecomp t x when t is a tree of strict functions�

Let the values of t and x be in the �rst and second positions of the environment�

respectively� and let � be de�ned by

��
�� � EB�� treecomp t x ��
�����
�
�� ���
��
���
��� �

Then � maps STR to
II LAM � � STR� revealing that the expression is strict in x�

and leaf�value strict in the tree� but not that it is strict in the branch structure of

the tree� the optimal result would be
FF LAM � � STR	 again this is a result of

abstraction� arising from the semantics of case� Next we consider the result for a

tree of
possibly� non�strict functions� let � be de�ned by

��
�� � EB�� treecomp t x ��
�����
�
�� ���
���ID�
���
��� �

Then � maps STR to II LAM � ID � which is optimal�

Example �adapted from �Sto������ Let FunType � FunType �� Int �� Int�

let g be short for

�f	FunType � �x	Int � case �x��� of

true �� �� �

false �� �� x � �f f �x � ��� �

and let fac be short for g g� Now FAbsFunType � FTranFunType � FAbsFFunType� and

T Bz �� FunType �� � �X �

T B� �� FunType �� � X � � T B�� Int �� Int ����

and we wish to determine FAbsFFunType� Suppose � � FTranFunType and v �

FAbsInt��Int� then we may deduce

step

�� ��� v� fabsf FunType �

CHAPTER
� HIGHER	ORDER ANALYSIS ���

hence the least �xed point of ���step

�� ��� v� is an element of FAbsFFunType� The

fact that this function is not monotonic
ultimately because FunType appears in a

contravariant argument position of ��� is not a problem if the �xed point is de�

termined as the limit of the canonical approximations on the approximating do�

mains for T B
�
� �� FunType ���
So� for example� the �rst approximation is
� in �� the

second step

��
��� v� in FTranFunType � �� � FAbsInt��Int� and so on�� The re�

sult is determined by � and v	 the abstract domain FAbsFFunType is isomorphic to

FTranFunType � �� � FabsInt��Int� Abstract application of � to
� �� ��� yields v if

� � w � and �� w �� and � otherwise�

Now EB�� g �� � � is

���ABS � �
�f� �f� �

���ABS � �
�x�
�� �

����
�x STR� t

�x STR� &
� � STR���
��

where

� ��
�� � EB�� f f �x � �� �� �f ��
�f� �f�� x ��
�x�
��� �� �

Then EB�� g g �� � � is

�
�f� �f� �
���ABS � �
�x�
�� �

����
�x STR� t

�x STR� &
� � STR���
��

where

� � � ����
�f LAM � &
	�
�f
�����x STR���� �

which is equal to
���ABS � �
�x�
���
�x�
���� showing that �x�ES�� fac x �� �x �� x� is

strict�

	���� Better semantics for case�

Using the unimproved semantics of case at �rst order� working in the �nite abstract

domains we were able to show that sum is strict in the spine of its list argument but

not that it is strict in the elements of the list� and that dfs in a FALSE �strict context

is leaf�strict but not that it is strict in the branch structure of the tree� At higher

order we have an analogous loss of information� given a list of strict functions we

can show that their composition� when applied� forces evaluation of the spine of the

list but not of the elements	 given a tree of strict functions we can show that their

composition� when applied� forces evaluation of each function if its enclosing leaf

node is ever examined� but not that every leaf node
and hence the branch structure�

is evaluated� At zero�order
and both approaches to �rst order� we were able to

improve the abstract semantics for case expressions to give optimal results for sum

CHAPTER
� HIGHER	ORDER ANALYSIS ���

and dfs� Proceeding �by analogy� with the zero�order case it is not too hard to give

an improved semantics for case at higher order that gives optimal results for compose

and treecomp� However� showing that this semantics is correctly related to the N�

semantics appears to be considerably more involved than the corresponding task at

zero order and we leave this for future investigation�

��� Binding�time Analysis

We de�ne �xF to be greatest �xed point� hence botF� botFz � and botF� are all �� The

F semantics is essentially the same as that described in �Dav��b��

Proposition ���

The semantic functions EN and EF are correctly related�

Proof

We need only verify that �xN and �xF are correctly related� Now botN� and botF�

are related by RN�F� �� T �� at each type T� hence botN and botF are correctly related�

As de�ned we have

�xN h �
F
i�� h i botN �

�xF � � j ji�� �i botF �

Let h and � be correctly related arguments of �xN and �xF� respectively� and let

!vi � hi botN and $vi � �i botF for all i
 �� Now !v� is correctly related to $v�� by

induction !vi is correctly related to $vi for all i
 �� the !vi are increasing and the $vi are

decreasing� Then ui��$vi is correctly related to !vi for all i since under�approximation

of F values is safe	 so ui��$vi is correctly related to ti��!vi since the relation is inclusive�

�

For each value in T N�� T �� there is a greatest related value in T F�� T ��� but in general

the F semantics does not preserve greatestness� If we restrict attention to denotable

values then the function space T Fz �� T� �� T� �� � T F�� T� ��� T F�� T� �� may be restricted

to the u�distributive functions�

It is easy to show that the zero�order analysis technique is a special case of the

higher�order technique�

Example� Let FSPINE be the projection transformer de�ned by

FSPINE � � ���ID� �
�� ��� �

CHAPTER
� HIGHER	ORDER ANALYSIS ���

Then FSPINE ID is ID� specifying completely static lists� and FSPINE BOT

acts as the identity on the spines of all lists but maps all list ele�

ments to �� specifying static spines and dynamic elements� Let fs be

fcons �
x�x��� fcons �
x�x��� fnil ����� a list of functions that map static

values to static values and dynamic values to dynamic values� and let

�fs� �fs� � EF�� fs �� � � �

Then �fs is ���ID and �fs is

��
�
��
���
� � � ��
���

��
�
��
���
� � � ��
���

����� �

where � � maps ID to ID and all other projections to BOT �

Let compose be de�ned as before� Here there is no guarantee that EF�� compose fs �� is

the same as EF��
x�x�� �� but in fact it is	 EF��
x�x�� �� � � is
���ID� �
��
���
� ����
���

where � � is de�ned as before�

Now let the the values of fs and x be in the �rst and second position of the environ�

ment� respectively� and let � be de�ned by

��
�� � EF�� compose fs x ��
�����
�fs�
��� �

Then � is the least element in its domain� it maps
FSPINE ID�� ID to ID and all

other projections to BOT � Had fs been a list of functions each mapping all values

to static values� for example

fcons �
x��� fcons �
x��� fnil ���� �

then � would map all projections greater than
FSPINE ID� � BOT to ID and all

other projections to BOT �

	���� Abstraction

The abstract projection domains SProj T are extended to all types T by

PS� �� T� �� T� �� � PS� �� �� �� � j � j � fIDg �

Then SProj T���T� � j �� j � fID�BOTg� The restriction of projection domains to

SProj induces abstract domains of projection transformers� just as at zero order	

abstract domains of F values� denoted SAbsT at each type T	 and an abstraction of

the F expression semantics� From these abstract domains of F values we choose �nite

CHAPTER
� HIGHER	ORDER ANALYSIS ���

subdomains FAbsT at each type T� First we extend FProj to function types by adding

the inference rule

BOT fproj �T� �� T�� �

Then FProj T���T� � SProj T���T� � and FProj T���T� � SProj T���T� �

Given type Egl de�ne the abstract domain of projection transformers FTranT to be

FProj Egl
F
� FProj T� Then FAbsT is FTranT � FAbsF T� where FAbsF T is the �nite

abstract domain of values from T Fz �� T ��� The domain FAbsFT is de�ned by a set of

inference rules	 their de�nition is the same as that for strictness analysis�

Example� Just as in the lifted case the abstract domain FAbsF FunList is isomorphic

to FAbsF Int��Int� The greatest abstract forward value safely abstracting all lists of

functions that map static arguments to static results is �
��
���
��
��� Let the values

of fs and x be in the �rst and second positions of the environment� respectively� and

let � be de�ned by

��
�� � EF�� compose fs x ��
�����
�
��
���
��
���
��� �

Then � maps
FSPINE ID� � ID to ID and all other projections to BOT � The

greatest abstract forward value safely abstracting all lists of functions that map all

arguments to static results is �
��
���
���ID�
��	 for � de�ned by

��
�� � EF�� compose fs x ��
�����
�
��
���
���ID�
���
��� �

the projection transformer � maps projections greater than
FSPINE ID��BOT to

ID and all other projections to BOT � Both results are optimal�

Example� The projection domain FProj FunTree is isomorphic to FProj BoolTree	 the

elements are BOT� FBRANCH BOT� and FBRANCH ID� where

FBRANCH � � ����� �
� � ��� �

Then FBRANCH ID is ID and FBRANCH BOT acts as the identity on the branch

nodes of all trees but maps all leaves to �� Again� just as in the lifted case� the

abstract domain FAbsF FunTree is isomorphic to FAbsF Int��Int� The greatest abstract

forward value safely abstracting all trees of functions that map static arguments to

static results is �
��
���
��
��� Let the values of fs and x be in the �rst and second

positions of the environment� respectively� and let � be de�ned by

��
�� � EF�� compose fs x ��
�����
�
��
���
��
���
��� �

CHAPTER
� HIGHER	ORDER ANALYSIS ���

Then � maps
FBRANCH ID� � ID to ID and all other projections to BOT � The

greatest abstract forward value safely abstracting all trees of functions that map all

arguments to static results is �
��
���
���ID�
��	 for � de�ned by

��
�� � EF�� compose fs x ��
�����
�
��
���
���ID�
���
��� �

Then � maps projections greater than
FBRANCH ID�� BOT to ID and all other

projections to BOT � Just as for lists of functions� both results are optimal�

Example� We consider fac as previously de�ned� Analysis gives optimal results�

fac denotes a function that maps static arguments to static results and dynamic

arguments to dynamic results�

��� Termination Analysis

We need only de�ne �xL� We take botL� to be the least FTA ���ABS of botN�� � then

botL� � botLz � and botL are correctly related to botN�� � botN�z � and botN�� respectively�

Then �xL is de�ned by

�xL f �
F
i�� wf i botL

where wf x � x t
f x � �

Proposition ���

The semantic functions EN� and EL are correctly related�

The proof is trivial� �

Just as at �rst order the result of �xL may be improved by narrowing� every element

of the descending sequence ff i
�xL f�g is correctly related to �xL f � When the

domains are �nite this sequence has a �xed point� which we take as the de�nition

�xL f when working in the �nite abstract domains� We conjecture that when the

domains are �nite that the sequence ff i botL j i
 �g reaches a �xed point	 this

would necessarily be a better result than the result of narrowing�

Example� It is straightforward to show that zero�order analysis and the second

approach to �rst�order analysis is a special case of higher�order analysis	 the key

fact is that application of lambda expressions
both
�x�e and
x�e� behaves like

substitution� A simple example is

EL��
x
Int�� �� � � �
���LAM � �
��
���
����lift� � � ��
���

�
���LAM � �
��
���
����lift� ��
��� �

CHAPTER
� HIGHER	ORDER ANALYSIS ���

This reveals that evaluation of
x
Int�� terminates� When applied we have

EL�� �
x
Int��� y �� �y ��
�����
��� �
����lift� ��
�� �

which reveals that regardless of the argument application of
x
Int�� always termi�

nates with value ��

Example� Let fs be

fcons �
x��� fcons �
x��� fnil ���� �

Let
�fs� �fs� � EL�� fs �� � �� so

�fs � �� � FCONS
LAM � FCONS
LAM � FNIL�� �

�fs �

��
�
��
���
����lift� ��
���

��
�
��
���
����lift� ��
���

BOTL
z �� IntList �� ��� �

which shows that fs is head� and tail terminating�

Now let funfoldr be de�ned as before� Before narrowing we have

EL�� compose fs �� �fs ��
����� �fs��

�
���LAM t ABS � �
��
���
����lift� � t ABS �
��� �

which fails to reveal that either funfoldr fs terminates or that funfoldr fs x

terminates for any value of x� Narrowing gives the expected value

���LAM � �
��
���
����lift� ��
��� �

so for the values of fs and x in the �rst and second positions of the environment�

EL�� compose fs x ��
�����
�fs�
���

�
����lift� ��
��� �

after narrowing� showing that the result is certain to terminate with value ��

	���� Abstraction

The abstract domains are the same as those for strictness analysis� We consider

results in the �nite domains after narrowing�

CHAPTER
� HIGHER	ORDER ANALYSIS ���

Example� The abstract injection and projection operators for FunList are

innilL
��
�� �
innilL� �� BOTL
z �� Int �� Int ��� �

outnilL
�� �� �
outnilL� ��
�� �

inconsL
��
��� ���� �
inconsL� �� �� t ��� �

outconsL
�� �� �
outconsL� ��
�� ��� �

Let fs be de�ned as before� Now

EL�� fnil �� �� � � �
���FNIL� �
��
���
���ABS �
��� �

so for
�fs� �fs� � EL�� fs �� � � we have

�fs � �� � FINF LAM �

�fs � �
��
���
���ID �
�� �

so termination and head�termination is determined� but nothing else� for example�

EL�� compose fs x �� �x ��
�����
��� is
���ID�
��� which tells nothing�

Analysis of treecomp gives similarly good results before abstraction and similarly

poor results after abstraction� The essence of the problem is that the least L value

BOTL
z �� T �� correctly related to the bottom N� value BOTN�

z �� T �� is not �� that is� it

is not the identity for t� For recursive de�nitions this forced us to use a widening

operator� but we were able to improve the results by narrowing� It is not clear how

to improve results for recursive data types�

��� Summary and Related Work

We have successfully generalised the zero�order analysis techniques to higher order�

We brie�y discuss related work�

	�	�� Strictness analysis

Hughes� technique� As mentioned� Hughes �Hug��a� suggested an approach to

higher�order backward strictness analysis using contexts� With the power of a great

deal of hindsight we can recast his non�standard semantic equations in terms of pro�

jections and suitably transform them to obtain a non�standard semantics that is

roughly parallel to ours� and specialises to Wadler and Hughes� �rst�order technique�

This technique appears to be considerably weaker than ours
and therefore correct��

but when abstracted to our choice of �nite domains would be incomparable to ours

because of the semantics of case expressions�

CHAPTER
� HIGHER	ORDER ANALYSIS ���

PER
based analysis� Hunt �Hun��b� Hun��a� Hun��b� proposed a strictness anal�

ysis technique for monomorphic languages in which the basic non�standard values are

partial equivalence relations
PERs�� A PER on a domain D is a binary relation on

D
a subset of D �D� that is transitive and symmetric	 it is partial because it need

not be re�exive� For strictness analysis the abstract domain of PERs at each �base

type� T
for illustration� type Int� is f� � g� where � � and

� f
x � y� j x � y � T S�� T ��g �

� f
x � x � j x � T S�� T ��g �

� f
����g �

Following Hunt� given R we write v � R to mean
v� v� � R� Then� for example�

function f is strict if f � � � constant if f � � � and the constant bottom function

if f � � 	 binary function f is strict in its �rst argument if f �
� � � � ignores its

�rst argument if f
 � � � � and so on�
Here � and � are the standard operators

on binary relations��

Recall that a projection � determines an equivalence relation
which we will write as

just �� in which the canonical representatives of the equivalence classes are the �xed

points of �	 two values are related if they are mapped to the same �xed point� Hunt

shows that ��f v f �� i� f � � � �� and claims that PER�based analysis of functions

is therefore strictly more general the projection�based analysis�

A crucial fact is that if Q and R are PERs then so are Q � R and Q � R	 this

does not hold for equivalence relations� or in particular those equivalence relations

de�ned by projections� for example BOT � ID is not an equivalence relation� As

Hunt shows this makes straightforward the de�nition of a compositional PER�based

higher�order program analysis technique� abstract function spaces are induced in the

straightforward way� for example� at type Int �� Int it is the set of monotonic maps

from f� � g to itself� and there is an interpretation of such functions as PERs on

T S�� Int �� Int ��� Hunt�s technique is able to discover� for example� head strictness�

It is far easier to compare PER�based and projection�based function analysis than

the corresponding program analysis techniques� Certainly a function f is determined

by the set of PERs of the form Q � R such that f � Q � R	 domain lifting is not

required� Presumably the PER�based analysis semantics in the full spaces of PERs

determines the standard expression semantics� so before abstraction to �nite domains

both approaches are in a sense equally powerful� Their relative power when abstracted

to particular �nite domains is not clear but certainly warrants further investigation�

CHAPTER
� HIGHER	ORDER ANALYSIS ���

	�	�� Binding�time analysis

PER
based analysis� Hunt �Hun��b� and with Sands �HS��� shows how PER�

based analysis can be used for binding�time analysis� In �HS��� PERs have been

re�ned to complete PERs
those that relate � to �
strict� and are chain complete

inductive�� The abstract PER domain at each base type is f� g where intuitively

indicates staticness and is equal to � and indicates dynamicness and is equal to �

Then� for example� function f maps static arguments to static results if f � � �

dynamic arguments to dynamic results if f � � � and so on� The abstract list

domain constructor is the topping operation� given abstract list element domain

P the abstract list domain comprises the new top element and values
� for all

� P � The PER
� relates all �nite� partial� and in�nite lists of the same length with

corresponding elements related by 	 intuitively
� indicates staticness in the spines

of lists and staticness property in all of the elements� At both base types and list

types these abstract domains are in ��� correspondence with our abstract projection

domains�

Hunt does not consider the staticness of functions or that functions can be evaluated�

that is� he considers only unlifted function spaces� It is a simple matter to extend his

treatment� We de�ne the operator
�� on PERs to be the usual lifting operation on

binary relations� and abstract domain lifting is again topping� given abstract function

domain P the abstract lifted function domain comprises the new top element and

elements
� for all � P � Intuitively indicates that the constructor lam is dynamic�

and
� indicates static functions that map their argument according to � Abstract

application of
� to q yields p q� and abstract application of to q necessarily yields �

Mogensen�s technique� Mogensen �Mog��� describes his technique as a higher�

order generalisation of Launchbury�s polymorphic binding�time analysis� Higher�

order functions are represented by abstract closures
symbolic representations of

functions which are manipulated algebraically� Approximation of recursively�de�ned

abstract closures is performed �on�the��y� according to time and space considerations�

The nature of these approximations is strongly dependent on the syntax of the cor�

responding function de�nitions� so non�standard values are not functions of standard

values� making precise comparison with our method di�cult� Unlike our approach�

the abstract values of higher�order functions are their projection abstractions� where

projections on functions are operations that map
parts of� abstract closures to ��

We regard this as somewhat �quick and dirty� since there is no formal notion of cor�

rectness�

CHAPTER
� HIGHER	ORDER ANALYSIS ���

	�	�� Termination analysis

There do not appear to be any termination analysis techniques comparable to ours�

Further� it is not clear how the PER�based approach might be adapted to termination

analysis�

Chapter

Conclusion

We conclude with a summary of the contributions of this thesis and some directions

for future work�

��� Summary

The presentations of the �rst projection�based program analysis techniques
Wadler

and Hughes� for strictness analysis� Launchbury�s for binding�time analysis
showed

very promising results but gave little indication of the potential power of projection�

based analysis� or how close to ideal their techniques are� To lessen this de�ciency�

in our treatment we started by considering the intrinsic power of projection�based

analysis of functions
rather than programs� in order to give some bounds on what

could be possibly achieved by projection�based program analysis� We showed that a

function is determined by a single forward or backward strictness abstraction� hence

that it might be possible to de�ne projection�based analysis semantics that determine

the standard semantics� that is� lose no information given by the standard semantics�

We also showed that termination properties may be captured with projections�

Before abstraction to �nite projection domains� the �rst�order strictness�analysis se�

mantics yields best non�standard values and determines the standard semantics� real�

ising the potential suggested above� When restricted to the �nite projection domains

used by Wadler and Hughes �WH��� our technique� unlike theirs� is able to detect

joint strictness properties� Nonetheless� in certain cases their technique yields results

better than ours	 we showed how the strengths of both techniques could be combined

to yield a technique strictly better than either�

Our �rst�order binding�time analysis technique is essentially the same as Launchbury�s

monomorphic technique �Lau��a��

���

CHAPTER �� CONCLUSION ���

While our �rst�order termination analysis technique is not as strong as might be

hoped� it appears to serendipitously lose information that could not reasonably be

expected to be exploited by a compiler� yielding only information that could� It is able

to capture potentially useful information� such as head termination� never captured

before�

All three techniques were generalised to higher order	 their merits read the same as

those for the �rst�order techniques� They are the �rst formally�based higher�order

projection�based techniques� Hughes� �Hug��a� and Mogensen�s �Mog��� being the

notable earlier attempts�

We assiduously avoided an ad hoc approach to the development of the analysis seman�

tics	 we have striven for a general and uniform approach� The bene�ts of this approach

are more than aesthetic� the correctness conditions are in some sense parallel and the

analysis semantics are essentially derived from the correctness conditions� More� the

higher�order correctness conditions and analysis semantics are parameterised by their

�rst�order counterparts in such a way that� once the parameterised semantics were

de�ned� the three higher�order correctness conditions and analysis semantics came

almost for free�

The correctness conditions for the higher�order analyses take the form of recursively�

de�ned predicates� While the underlying theory of recursively�de�ned predicates was

developed by Milne and Strachey �MS���� their presentation is considered rough going

and is cast in terms of a universal domain� We have recast their theory in terms of

domains constructed from primitive domains
following Schmidt �Sch���� yielding� we

believe� a more comprehensible presentation�

��	 Loose Ends

Before mentioning some general areas for future work we summarise some loose ends

that could reasonably be developed in a continuation of this work�

Our use of unboxed function and product types was simply to give a more uniform

development� and did not involve the unpointed domains arising from a general treat�

ment of unboxed types �PJL���� A proper treatment would be a useful generalisation

since they may be used explicitly by programs� or implicitly by the compiler
for

example� when ordinary
boxed� integers are used in Glasgow Haskell�� We have

given some indications that such a generalisation would be straightforward� in par�

ticular for strictness analysis� where relevant in Chapter � we considered the analysis

CHAPTER �� CONCLUSION ���

of strict bottom�re�ecting functions rather than just the special case of functions

f� � U�
sb
� V� where U and V are
pointed� domains�

For backward strictness analysis the treatment of case expressions could be explored

further� This was pursued with positive results at �rst order� with the suggestion that

further exploration might be worthwhile� Short of that� a worthwhile improvement

would be the modi�cation of the semantics of case expressions at higher order
as

was done at �rst order� to improve the results of analysis in the �nite domains	 this

is discussed further in the next section�

��
 Polymorphism

The chief de�ciency of our entire approach is the inability to handle polymorphism	

for our analysis techniques to be genuinely useful this problem must be overcome�

Following we suggest a possible approach�

Hughes� early work on the abstract interpretation of �rst�order polymorphic functions

�Hug��� has since been developed in two directions� The �rst is Hughes and Launch�

bury�s �HL��a� polymorphic projection�based backward strictness analysis technique

and Launchbury�s �Lau��a� polymorphic projection�based forward binding�time anal�

ysis technique� The second is Hughes and Baraki�s generalisation to abstract interpre�

tation of higher�order polymorphic functions �BH��� Bar��� Bar���� Recalling that

the values arising from our analysis techniques consist of a projection abstraction of a

�rst�order function� and a function
or tuple of functions� from a lattice to a lattice�

we conjecture that the two developments could be combined� Hughes and Launch�

bury�s theory to handle polymorphism in the projection abstractions� and Baraki�s

to handle polymorphism in the forward components�

One possible source of di�culty in this approach is the presence of CHOOSE since it

is de�ned in terms of type structure
Section ������� One way around this would be

to �nd a de�nition for CHOOSE that does not depend on the type� For backward

strictness analysis it appears that CHOOSEB
z de�ned by

CHOOSEB
z �� T ��
��� ��� � � � � �n� � �� t � � � t �n

is safe� in the sense that it is correctly related to CHOOSEN�
z �� T ��� and hence would

yield a correct analysis semantics�
And similarly for termination analysis	 for

binding�time analysis u replaces t�� This is also interesting because such a de�nition

is needed to allow the improvement for case expressions suggested in Section ������

CHAPTER �� CONCLUSION ���

Further� Hughes� approach to higher�order backward analysis �Hug��a� depends on

the correctness of essentially the same de�nition�

On a more modest scale� we conjecture that the generalisation of our �rst�order

termination analysis technique to polymorphism would be straightforward using the

theory developed by Hughes and Launchbury�

��� Implementation

As is often the case with non�standard interpretation� implementation is problematic

at higher order because the domains associated with higher�order types become very

large� so that the time and space costs of analysis become prohibitive�

Conceptually� implementation of our techniques is feasible� As previously mentioned�

we have implemented a prototype monomorphic �rst�order backward strictness anal�

yser� Kubiak has implemented a polymorphic analyser for a �rst�order subset of the

Haskell Core language� and Launchbury has implemented both monomorphic and

polymorphic versions of a �rst�order binding�time analyser� There are two indica�

tions that if our analysis techniques could be generalised to polymorphism in the

manner suggested then implementation would be less problematic� �rst� Launch�

bury reported that implementing the polymorphic version was actually simpler than

the monomorphic one �Lau���	 second� Baraki�s theory allows the implementation

of a higher�order strictness analyser to be vastly more e�cient than a comparable

monomorphic analyser� as demonstrated by Seward �Sew����

Although there is no formal argument for the correctness of Mogensen�s �Mog��� im�

plementation of a higher�order generalisation of Launchbury�s polymorphic analyser�

it appears to produce correct results and to run acceptably fast	 adapting his ap�

proach to strictness analysis and termination analysis might give practical� if rather

quick and dirty� analysers�

��� Other Applications of the General Approach

Taking a step back� we believe that there is much wider scope for our general approach

to promoting �rst�order analysis techniques to higher order� We give two examples�

We considered forward strictness abstraction of both lifted and unlifted functions� but

corresponding semantics for program analysis were developed only with respect to the

unlifted case	 this was appropriate for binding�time analysis� It is clear that giving

CHAPTER �� CONCLUSION ���

the corresponding analysis semantics for the lifted case would yield semantics suitable

for forward strictness analysis	 it would be worthwhile to develop these techniques for

comparison with the backward techniques�

It seems clear that we could also promote �rst�order BHA strictness and termination

analysis techniques to higher order in our framework	 except for �x
which would be

least �xed point� we would get for free analysis techniques essentially the same as

the higher�order BHA techniques� It is interesting to consider why this works� the

answer seems to be that the corresponding higher�order correctness conditions would

be� in essence� instances of the logical relations Abramsky used to so concisely prove

correctness of higher�order BHA analysis �Abr���� This is also interesting because the

generalisation of such a technique to polymorphism using Baraki�s theory would be a

natural stepping�stone to the more complex problem for higher�order projection�based

analysis�

��� Projections for Program Analysis

Both our work and others� has shown the use of projections to be a powerful tool for

program analysis� Our work is neither the beginning of the story
which is properly

credited to Hughes� Wadler� and Launchbury
nor hopefully the end
there remains

much to do� We have contributed� we believe� signi�cant forward steps on three

fronts� by providing results on the intrinsic power of projection�based analysis	 by

generalising� strengthening� and making more e�cient existing techniques	 and by

extending the scope of projection�based program analysis by giving projection�based

termination analysis techniques� We look forward to the day when such techniques are

usefully employed in compilers and partial evaluators for lazy functional languages�

Bibliography

�Abr��� S� Abramsky� Strictness analysis and polymorphic invariance� Proceedings

of the Workshop on Programs a Data Objects
Copenhagen�� H� Ganzinger

and N� Jones� eds� LNCS ���� Springer�Verlag� �����

�Abr��� S� Abramsky� The lazy lambda calculus� In D�A� Turner� ed� Research Top�

ics in Functional Programming� Addison�Wesley� �����

�Abr��� S� Abramsky� Abstract interpretation� logical relations and Kan extensions�

Journal of Logic and Computation� �� �����

�AH��b� S� Abramsky and C� Hankin� An introduction to abstract interpretation�

Chapter � of S� Abramsky and C� Hankin� eds� Abstract Interpretation of

Declarative Languages� Ellis�Horwood� �����

�AJ��� S� Abramsky and T� Jensen� A relational approach to strictness analysis for

higher�order polymorphic functions� Proceedings of the ACM Symposium on

Principles of Programming Languages �POPL
�
�� ACM Press� �����

�ASU��� A�V� Aho� R� Sethi� and J�D� Ullman� Compilers�Principles� Techniques�

and Tools� Addison�Wesley� �����

�Aug��� L� Augustsson� A compiler for Lazy ML� Proceedings of the ACM Confer�

ence on Lisp and Functional Programming �Lisp and FP
���� ACM Press�

�����

�AJ��� L� Augustsson and T� Johnson� The Chalmers Lazy ML compiler�Computer

Journal� Special Issue on Lazy Functional Programming� ��
��� �����

�BH��� G� Baraki and J� Hughes� Abstract interpretation of polymorphic func�

tions� In K� Davis and J� Hughes� eds� Functional Programming� Glasgow

���� Proceedings of the
��� Glasgow Workshop on Functional Program�

ming� �
��� August
���� Fraserburgh� Scotland� Springer Workshops in

Computing� Springer�Verlag� �����

���

Bibliography ���

�Bar��� G� Baraki� A note on abstract interpretation of polymorphic functions�

In J� Hughes� ed� Proceedings of the ACM Conference on Functional Pro�

gramming Languages and Computer Architecture �FPCA
�
�� LNCS ����

Springer�Verlag� �����

�Bar��� G� Baraki� Abstract Interpretation of Polymorphic Higher�Order Functions�

Ph�D� thesis� Research report FP�������� Department of Computing Sci�

ence� University of Glasgow� �����

�Bar��� H� Barendregt� Functional Programming and Lambda Calculus� Chapter �

of J� van Leeuwen� ed� Handbook of Theoretical Computer Science� Vol� B

Elsevier Science Publishers B�V�� Amsterdam� �����

�Ber��� G� Berry� Stable models of typed lambda�calculi� Proceedings of the �th

ICALP� LNCS ��� Springer�Verlag� �����

�Bon��� A� Bondorf� Binding�time analysis for polymorphically typed higher order

languages� International Joint Conference on Theory and Practice of Soft�

ware Development� J� Diaz and F� Orejas� eds� LNCS ���� Springer�Verlag�

�����

�BJ"��� A� Bondorf� N�D� Jones� T� Mogensen� P� Sesto�� Binding�time analysis and

the taming of self�application�
Appeared as DIKU tech report in ������

�BD��� A� Bondorf and O� Danvy� Automatic autoprojection of recursive equa�

tions with global variables and abstract data types� Science of Computer

Programming� North Holland� �����

�Bur��a� G�L� Burn� Evaluation transformers
A model for the parallel evaluation

of functional languages� Proceedings of the ACM Conference on Functional

Programming Languages and Computer Architecture �FPCA
���� LNCS

���� Springer�Verlag� �����

�Bur��b� G�L� Burn� Abstract Interpretation and the Parallel Evaluation of Func�

tional Languages� Ph�D� thesis� Department of Computing� Imperial Col�

lege� London� March �����

�Bur��a� G�L� Burn� Using projection analysis in compiling lazy functional programs�

Proceedings of the ACM Conference on Lisp and Functional Programming

�Lisp and FP
���� ACM Press� �����

�Bur��b� G�L� Burn� Strictness is not needed in order to evaluate arguments strictly�

Posting to comp�lang�functional newsgroup� �����

Bibliography ���

�Bur��c� G�L� Burn� A relationship between abstract interpretation and projection

analysis� Proceedings of the ACM Symposium on Principles of Programming

Languages �POPL
���� ACM Press� �����

�Bur��a� G�L� Burn� Implementing the evaluation transformer model of reduction on

parallel machines� Journal of Functional Programming� �
��� April �����

CUP� �����

�Bur��b� G�L� Burn� Lazy Functional Languages� Abstract Interpretation and Com�

pilation� Pitman� �����

�Bur��c� G�L� Burn� The evaluation transformer model of reduction and its correct�

ness� TAPSOFT ����

�Bur��� G� Burn� The abstract interpretation of higher�order functional languages�

From properties to abstract domains� In P� Wadler et al�� eds� Functional

Programming� Glasgow
��
� Proceedings of the
��
 Glasgow Workshop

on Functional Programming�
��
� August
��
� Isle of Skye� Scotland�

Springer Workshops in Computing� Springer�Verlag� �����

�BH��� G� Burn and S� Hunt� Relating projection� and abstract interpretation�

based analyses� Draft manuscript� Department of Computing� Imperial Col�

lege� London� July �����

�BM��� G� Burn and D� Le M!etayer� Proving the correctness of compiler optimisa�

tions based on strictness analysis�

�BHA��� G� Burn� C� Hankin� and S� Abramsky� The theory of strictness analysis

for higher�order functions� Proceedings of the Workshop on Programs as

Data Objects
Copenhagen�� H� Ganzinger and N� Jones� eds� LNCS ����

Springer�Verlag� �����

�Con��� C� Consel� New insights into partial evaluation� The SCHISM experiment�

European Symposium on Programming �ESOP
���� LNCS ���� Springer�

Verlag� �����

�Con��� C� Consel� Binding time analysis for higher order untyped functional lan�

guages� Proceedings of the ACM Conference on Lisp and Functional Pro�

gramming �Lisp and FP
���� ACM Press� �����

�Con��� C� Consel� A tour of Schism� A partial evaluation system for higher�order

applicative languages� Proceedings of the ACM Symposium on Partial Eval�

Bibliography ���

uation and Semantics�Based Program Manipulation �PEPM
���� ACM

Press� �����

�CC��� P� Cousot and R� Cousot� Comparing the Galois connection and widen�

ing�narrowing approaches to abstract interpretation
preliminary draft��

LIX� Ecole Polytechnique� ����� Palaiseau Cedex� France� May ��� �����

�Cur��� P�L� Curien� Categorical Combinators� Sequential Algorithms and Func�

tional Programming� Research Notes in Theoretical Computer Science� Pit�

man� �����

�DP��� B�A� Davey and H�A� Priestley� Introduction to Lattices and Order� Cam�

bridge University Press� �����

�Dav��� K� Davis� Second year Ph�D� progress report� Computing Science Depart�

ment� University of Glasgow� �����

�DH��� K� Davis and J� Hughes� eds� Functional Programming� Glasgow
���� Pro�

ceedings of the
��� Glasgow Workshop on Functional Programming� �
�

�� August
���� Fraserburgh� Scotland� Springer Workshops in Computing�

Springer�Verlag� �����

�DW��� K� Davis and P� Wadler� Strictness analysis� Proved and improved� In K�

Davis and J� Hughes� eds� Functional Programming� Glasgow
���� Pro�

ceedings of the
��� Glasgow Workshop on Functional Programming� �
�

�� August
���� Fraserburgh� Scotland� Springer Workshops in Computing�

Springer�Verlag� �����

�DW��� K� Davis and P� Wadler� Strictness analysis in �D� In S�L� Peyton Jones et

al�� eds� Functional Programming� Glasgow
���� Proceedings of the
���

Glasgow Workshop on Functional Programming�
��
� August
���� Ul�

lapool� Scotland� Springer Workshops in Computing� Springer�Verlag� �����

�Dav��� K� Davis� A note on the choice of domains for projection�based program

analysis� In P� Wadler et al�� eds� Functional Programming� Glasgow
��
�

Proceedings of the
��
 Glasgow Workshop on Functional Programming�

��
� August
��
� Isle of Skye� Scotland� Springer Workshops in Comput�

ing� Springer�Verlag� �����

�Dav��a� K� Davis� Analysing functions by projection�based backward abstraction�

Functional Programming� Glasgow
���� Proceedings of the
��� Glas�

gow Workshop on Functional Programming� ��� July
���� Ayr� Scotland�

Springer Workshops in Computing� Springer�Verlag� �����

Bibliography ���

�Dav��b� K� Davis� Higher�order binding�time analysis� Proceedings of the ACM Sym�

posium on Partial Evaluation and Semantics�Based Program Manipulation

�PEPM
���� ACM Press� �����

�Dav��� K� Davis� Projection�based termination analysis� In K� Hammond and J�

O�Donnell� eds� Functional Programming� Glasgow
���� Proceedings of the

��� Glasgow Workshop on Functional Programming� ��� July
���� Ayr�

Scotland� Springer Workshops in Computing� Springer�Verlag� �����

�Dyb��� P� Dybjer� Inverse image analysis generalises strictness analysis� Proceedings

of the
�th ICALP
Karlsruhe� July ������ LNCS ���� Springer�Verlag�

�����

�vE"��� M� van Eekelen� E� Goubault� C� Hankin� E� N#ocker� Abstract reduction�

towards a theory via abstract interpretation� Term Graph Rewriting Theory

and Practice� R� Sleep� M� Plasmeijer� M� van Eekelen� eds� John Wiley &

Sons� �����

�Fai��� J� Fairbairn� Removing redundant laziness from super�combinators� Pro�

ceedings of the Workshop on Implementation of Functional Languages
As�

pen#as� Sweden�� Report ��� Programming Methodology Group� Depart�

ment of Computer Sciences� Chalmers University of Technology and Uni�

versity of G#oteborg� G#oteborg� Sweden� �����

�FW��� J� Fairbairn and S� Wray� Code generation techniques for functional lan�

guages� Proceedings of the ACM Conference on Lisp and Functional Pro�

gramming �Lisp and FP
���� ACM Press� �����

�BF��� S� Finne and G� Burn� Assessing the evaluation transformer model of re�

duction on the Spineless G�Machine� Proceedings of the ACM Conference

on Functional Programming Languages and Computer Architecture �FPCA

���� ACM Press� �����

�Go��� C�K� Gomard� A self�applicable partial evaluator for the lambda calculus�

Correctness and pragmatics� ACM TOPLAS ��
��� April �����

�GJ��� C�K� Gomard and N�D� Jones� A partial evaluator for the untyped lambda�

calculus� Journal of Functional Programming �
��� January ����� CUP�

�����

�GS��� C�A� Gunter and D�A� Scott� Semantic Domains� Chapter �� of J� van

Leeuwen� ed� Handbook of Theoretical Computer Science� Vol� B Elsevier

Science Publishers B�V�� Amsterdam� �����

Bibliography ���

�HW��� C�V� Hall and D�S� Wise� Compiling strictness into streams� Proceedings

of the ACM Symposium on Principles of Programming Languages �POPL

���� ACM Press� �����

�Hal��� C� Hall� Using strictness analysis in practice for data structures� In K�

Hammond and J� O�Donnell� eds� Functional Programming� Glasgow
����

Proceedings of the
��� Glasgow Workshop on Functional Programming�

��� July
���� Ayr� Scotland� Springer Workshops in Computing� Springer�

Verlag� �����

�Har��� P�H� Hartel� On the bene�ts of di�erent analyses in the compilation of lazy

functional languages� �rd Informal International Workshop on the Parallel

Implementation of Functional Languages� Southampton� �����

�Hol��� S� Holmstr#om� A Flexible Type System� Report �� Programming Method�

ology Group� Institutionen f#or Informationsbehandling� Chalmers Tekniska

H#ogskola� G#oteborg� Sweden� �����

�Hol��� C� Holst� Finiteness analysis� In J� Hughes� ed� Proceedings of the ACM

Conference on Functional Programming Languages and Computer Archi�

tecture �FPCA
�
�� LNCS ���� Springer�Verlag� �����

�HB��� D�B� Howe and G�L� Burn� Using strictness in the STG machine� In K�

Hammond and J� O�Donnell� eds� Functional Programming� Glasgow
����

Proceedings of the
��� Glasgow Workshop on Functional Programming�

��� July
���� Ayr� Scotland� Springer Workshops in Computing� Springer�

Verlag� �����

�HPW��� P� Hudak� S�L� Peyton Jones� and P� Wadler� eds� Report on the program�

ming language Haskell� ACM SIGPLAN Notices ��
��� May �����

�Hug��� R�J�M� Hughes� Strictness detection in non��at domains� Proceedings of the

Workshop on Programs a Data Objects
Copenhagen�� H� Ganzinger and

N� Jones� eds� LNCS ���� Springer�Verlag� ����

�Hug��a� R�J�M� Hughes� Backwards analysis of functional programs� In D� Bj'rner�

A�P� Ershov� and N�D� Jones� eds� Partial Evaluation and Mixed Com�

putation� Proceedings IFIP TC� Workshop� Gammel Avern�s� Denmark�

October ����� North�Holland� �����

�Hug��b� R�J�M� Hughes� Analysing strictness by abstract interpretation of continua�

tions� Chapter � of S� Abramsky and C� Hankin� eds� Abstract Interpretation

of Declarative Languages� Ellis�Horwood� �����

Bibliography ���

�Hug��� R�J�M� Hughes� Abstract interpretation of �rst�order polymorphic func�

tions� Functional Programming� Glasgow
���� Proceedings of the
���

Glasgow Workshop on Functional Programming� Research report ���R��

University of Glasgow� �����

�Hug��� R�J�M� Hughes� Compile�time analysis of functional programs� In D�A�

Turner� ed� Research Topics in Functional Programming� Addison�Wesley�

�����

�HL��� R�J�M� Hughes and J� Launchbury� Towards relating forwards and back�

wards analyses� In S�L� Peyton Jones et al�� eds� Functional Programming�

Glasgow
���� Proceedings of the
��� Glasgow Workshop on Functional

Programming�
��
� August
���� Ullapool� Scotland� Springer Workshops

in Computing� Springer�Verlag� �����

�HL��a� R�J�M� Hughes and J� Launchbury� Projections for polymorphic �rst�order

strictness analysis� Math� Struct� in Comp� Science� Vol� �� CUP� �����

�HL��b� R�J�M� Hughes and J� Launchbury� Reversing abstract interpretation� Eu�

ropean Symposium on Programming �ESOP
���� Springer�Verlag� �����

�HL��c� R�J�M� Hughes and J� Launchbury� Relational reversal of abstract interpre�

tation� J� Logic Comput� �
��� OUP� �����

�Hun��a� S� Hunt� Projection analysis and stable functions� Draft manuscript� De�

partment of Computing� Imperial College� London� �����

�Hun��b� S� Hunt� PERs generalise projections for strictness analysis� Technical re�

port DOC ������ Department of Computing� Imperial College� London�

�����

�Hun��a� S� Hunt� PERs generalise projections for strictness analysis
extended ab�

stract�� In S�L� Peyton Jones et al�� eds� Functional Programming� Glasgow

���� Proceedings of the
��� Glasgow Workshop on Functional Program�

ming�
��
� August
���� Ullapool� Scotland� Springer Workshops in Com�

puting� Springer�Verlag� �����

�Hun��b� S� Hunt� Abstract Interpretation of Functional Languages� From Theory to

Practice� Ph�D� thesis� Department of Computing� Imperial College� Lon�

don� �����

Bibliography ���

�HS��� S� Hunt and D� Sands� Binding time analysis� a new PERspective� Proceed�

ings of the ACM Symposium on Partial Evaluation and Semantics�Based

Program Manipulation �PEPM
�
�� ACM SIGPLAN Notices ��
��� �����

�Jen��� T� Jensen� Strictness analysis in logical form� In J� Hughes� ed� Proceed�

ings of the ACM Conference on Functional Programming Languages and

Computer Architecture �FPCA
�
�� LNCS ���� Springer�Verlag� �����

�Jen��� T� Jensen� Abstract Interpretation in Logical Form� Ph�D� thesis� Report

������ Department of Computer Science� University of Copenhagen� �����

�Joh��� T� Johnsson� Detecting when call�by�value can be used instead of call�by�

need� Programming Methodology Group Memo PMG���� Institutionen f#or

Informationsbehandling� Chalmers Tekniska H#ogskola� G#oteborg� Sweden�

�����

�Joh��� T� Johnsson� Attribute grammars as a functional programming paradigm�

Proceedings of the ACM Conference on Functional Programming Languages

and Computer Architecture �FPCA
���� LNCS ���� Springer�Verlag� �����

�Jon��� N�D� Jones� Automatic program specialization� A re�examination from ba�

sic principles� In D� Bj'rner� A�P� Ershov� and N�D� Jones� eds� Partial Eval�

uation and Mixed Computation� Proceedings IFIP TC� Workshop� Gammel

Avern�s� Denmark� October ����� North�Holland� �����

�JSS��� N�D� Jones� P� Sesto�� H� Sondergaard� An experiment in partial evalu�

ation� the generation of a compiler generator� Rewriting Techniques and

Applications� LNCS ���� Springer�Verlag� �����

�JGS��� N�D� Jones� C�K� Gomard� and P� Sestoft� Partial Evaluation and Auto�

matic Program Generation� Prentice Hall International� �����

�JM��� S�B� Jones and D� Le M!etayer� Compile�time garbage collection by sharing

analysis� Proceedings of the ACM Conference on Functional Programming

Languages and Computer Architecture �FPCA
���� ACM Press� �����

�Kam��� S� Kamin� Head strictness is not monotonic abstract property� Information

Processing Letters� North Holland� �����

�KL��� D� King and J� Launchbury� Functional graph algorithms with depth��rst

search� In K� Hammond and J� O�Donnell� eds� Functional Programming�

Glasgow
���� Proceedings of the
��� Glasgow Workshop on Functional

Bibliography ���

Programming� ��� July
���� Ayr� Scotland� Springer Workshops in Com�

puting� Springer�Verlag� �����

�KHL��� R� Kubiak� J� Hughes� and J� Launchbury� Implementing projection�based

strictness analysis� Departmental Research Report �����R�� Department

of Computing Science� University of Glasgow� �����

�KM��� T�M� Kuo and P� Mishra� Strictness analysis� A new perspective based

on type inference� Proceedings of the ACM Conference on Functional Pro�

gramming Languages and Computer Architecture �FPCA
���� ACM Press�

�����

�Lau��� J� Launchbury� Projections for specialisation� In D� Bj'rner� A�P� Ershov�

and N�D� Jones� eds� Partial Evaluation and Mixed Computation� Pro�

ceedings IFIP TC� Workshop� Gammel Avern�s� Denmark� October �����

North�Holland� �����

�Lau��� J� Launchbury� Private communication�

�Lau��a� J� Launchbury� Strictness analysis aids inductive proofs� Information Pro�

cessing Letters ��� North Holland� �����

�Lau��b� J� Launchbury� Dependent sums express separation of binding times� In K�

Davis and J� Hughes� eds� Functional Programming� Glasgow
���� Pro�

ceedings of the
��� Glasgow Workshop on Functional Programming� �
�

�� August
���� Fraserburgh� Scotland� Springer Workshops in Computing�

Springer�Verlag� �����

�Lau��a� J� Launchbury� Projection Factorisations in Partial Evaluation� Ph�D� the�

sis� Research report CSC ���R�� Department of Computing Science� Uni�

versity of Glasgow� ����� Distinguished Dissertations in Computer Science�

Vol� �� CUP� �����

�Lau��b� J� Launchbury� Strictness and binding�time analyses� Two for the price of

one� Proceedings of the ACM Conference on Programming Language Design

and Implementation �PLDI
�
�� ACM Press� �����

�Lau��� J� Launchbury� A natural semantics for lazy evaluation� Proceedings of the

ACM Symposium on Principles of Programming Languages �POPL
����

ACM Press� �����

Bibliography ���

�Les��� D� Lester� Combinator Graph Reduction� A Congruence and its Appli�

cations� D�Phil thesis� Technical Monograph PRG ��� Oxford University

Computing Laboratory� Programming Research Group� Oxford University�

�����

�LM��� A� Leung and P� Mishra� Reasoning about simple and exhaustive demand

in higher�order lazy languages� In J� Hughes� ed� Proceedings of the ACM

Conference on Functional Programming Languages and Computer Archi�

tecture �FPCA
�
�� LNCS ���� Springer�Verlag� �����

�Mat��� J� Mattson� Local speculative evaluation for distributed graph reduction�

In K� Hammond and J� O�Donnell� eds� Functional Programming� Glasgow

���� Proceedings of the
��� Glasgow Workshop on Functional Program�

ming� ��� July
���� Ayr� Scotland� Springer Workshops in Computing�

Springer�Verlag� �����

�MS��� R� Milne and C� Strachey� A Theory of Programming Language Semantics�

Chapman and Hall� �����

�Mil��� R� Milner� A theory of type polymorphism in programming� J� Comput�

Syst� Sci�
�� pages �������� �����

�Mog��� T� Mogensen� Partially static structures in a self�applicable partial evalu�

ator� In D� Bj'rner� A�P� Ershov� and N�D� Jones� eds� Partial Evaluation

and Mixed Computation� Proceedings IFIP TC� Workshop� Gammel Av�

ern�s� Denmark� October ����� North�Holland� �����

�Mog��� T� Mogensen� Binding�time analysis for polymorphically typed higher order

languages� International Joint Conference on Theory and Practice of Soft�

ware Development� J� Diaz and F� Orejas� eds� LNCS ���� Springer�Verlag�

�����

�Myc��� A� Mycroft� Abstract Interpretation and Optimising Transformations for

Applicative Programs� Ph�D� thesis� University of Edinburgh� �����

�NM��� M� Neuberger and P� Mishra� A precise relationship between the deductive

power of forward and backward strictness analysis� Proceedings of the ACM

Conference on Lisp and Functional Programming �Lisp and FP
���� ACM

Press� �����

�Nie��� F� Nielson� Two�level semantics and abstract interpretation� Theoretical

Computer Science ��� pages �������� North�Holland� �����

Bibliography ���

�NN��a� H�R� Nielson and F� Nielson� Automatic binding�time analysis for a typed

��calculus� Science of Computer Programming
�� North Holland� �����

�NN��b� H�R� Nielson and F� Nielson� Automatic binding�time analysis for a typed

��calculus
Extended abstract�� Proceedings of the ACM Symposium on

Principles of Programming Languages �POPL
���� ACM Press� �����

�NN��� H�R� Nielson and F� Nielson� Transformations on higher�order functions�

Proceedings of the ACM Conference on Functional Programming Languages

and Computer Architecture �FPCA
���� ACM Press� �����

�NN��� H�R� Nielson and F� Nielson� Bounded �xed point iteration� Report

DAIMI PB����� Computer Science Department� Aarhus University� Ny

Munkegade� Building ���� DK����� Aarhus C� Denmark� July �����

�NN��� F� Nielson and H�R� Nielson� Two�Level Functional Languages� Cambridge

Tracts in Theoretical Computer Science� Vol� ��� Cambridge University

Press� New York� �����

�N#oc��� E� N#ocker� Strictness analysis using abstract reduction� Proceedings of the

ACM Conference on Functional Programming Languages and Computer

Architecture �FPCA
���� ACM Press� �����

�NS"��� E� N#ocker� J� Smesters� M� van Eekelen� and M� Plasmeijer� Concurrent

Clean� Parallel Architectures and Languages Europe �PARLE
��� LNCS

���� Springer�Verlag� �����

�Ong��� C��H�L� Ong� The Lazy Lambda Calculus� An Investigation in the Founda�

tions of Functional Programming� Ph�D� thesis� Imperial College� London�

�����

�PJ��� S�L� Peyton Jones� The Implementation of Functional Programming Lan�

guages� Prentice�Hall International
UK� Ltd�� London� �����

�PJL��� S�L� Peyton Jones and J� Launchbury� Unboxed values as �rst class citizens

in a non�strict functional language� In J� Hughes� ed� Proceedings of the

ACM Conference on Functional Programming Languages and Computer

Architecture �FPCA
�
�� LNCS ���� Springer�Verlag� �����

�PJL��� S�L� Peyton Jones and D� Lester� Implementing Functional Languages�

Prentice Hall International
UK� Ltd�� London� �����

Bibliography ���

�PJP��� S�L� Peyton Jones and W� Partain� Measuring the e�ectiveness of a sim�

ple strictness analyser� In K� Hammond and J� O�Donnell� eds� Functional

Programming� Glasgow
���� Proceedings of the
��� Glasgow Workshop

on Functional Programming� ��� July
���� Ayr� Scotland� Springer Work�

shops in Computing� Springer�Verlag� �����

�San��a� D� Sands� Complexity analysis for a lazy higher�order language� In K� Davis

and J� Hughes� eds� Functional Programming� Glasgow
���� Proceedings

of the
��� Glasgow Workshop on Functional Programming� �
��� August

���� Fraserburgh� Scotland� Springer Workshops in Computing� Springer�

Verlag� �����

�San��b� D� Sands� Complexity analysis for a lazy higher�order language� Proceedings

of the Third European Symposium on Programming� LNCS ���� Springer�

Verlag� �����

�San��c� D� Sands� Calculi for Time Analysis of Functional Programs� Ph�D� thesis�

Department of Computing� Imperial College� London� September �����

�Sch��� D�A� Schmidt� Denotational Semantics� Allyn and Bacon� Inc�� Newton�

Massachussetts� �����

�Sch��� D�A� Schmidt� Static properties of partial reduction� In D� Bj'rner� A�P�

Ershov� and N�D� Jones� eds� Partial Evaluation and Mixed Computation�

Proceedings IFIP TC� Workshop� Gammel Avern�s� Denmark� October

����� North�Holland� �����

�Sco��� D�S� Scott� Data types as lattices� SIAM Journal of Computing �� �����

�Sew��� J� Seward� Solving recursive domain equations by term rewriting� In K�

Hammond and J� O�Donnell� eds� Functional Programming� Glasgow
����

Proceedings of the
��� Glasgow Workshop on Functional Programming�

��� July
���� Ayr� Scotland� Springer Workshops in Computing� Springer�

Verlag� �����

�Sew��� J� Seward� Polymorphic strictness analysis using frontiers� Proceedings of

the ACM Symposium on Partial Evaluation and Semantics�Based Program

Manipulation �PEPM
���� ACM Press� �����

�SN"��� S� Smesters� E� N#ocker� J� van Groningen� and R� Plasmeijer� Generating

e�cient code for lazy functional languages� In J� Hughes� ed� Proceedings of

Bibliography ���

the ACM Conference on Functional Programming Languages and Computer

Architecture �FPCA
�
�� LNCS ���� Springer�Verlag� �����

�Sto��� J�E� Stoy� Denotational Semantics� The Scott�Strachey Approach to Pro�

gramming Language Theory� The MIT Press� Cambridge� Massachusetts�

�����

�Sto��� J�E� Stoy� Some mathematical aspects of functional programming� Func�

tional Programming and its Applications� J� Darlington� P� Henderson� and

D�A� Turner� eds� Cambridge University Press� �����

�Tur��� D�A� Turner� Miranda� A non�strict functional language with polymorphic

types� LNCS ���� Springer�Verlag� �����

�Tur��� D�A� Turner� An overview of Miranda� SIGPLAN Notices ��
���� ����� Also

in D�A� Turner� ed� Research Topics in Functional Programming� Addison�

Wesley� �����

�Wad��� P� Wadler� An Introduction to Orwell ����S� Programming Research Group�

Oxford University� �����

�Wad��� P� Wadler� Strictness analysis on non��at domains by abstract interpreta�

tion over �nite domains� Chapter �� of S� Abramsky and C� Hankin� eds�

Abstract Interpretation of Declarative Languages� Ellis�Horwood� �����

�Wad��� P� Wadler� Strictness analysis aids time analysis� Proceedings of the ACM

Symposium on Principles of Programming Languages �POPL
���� ACM

Press� �����

�Wad��� P� Wadler� Comprehending monads� Proceedings of the ACM Conference on

Lisp and Functional Programming �Lisp and FP
���� ACM Press� �����

�WH��� P� Wadler and J� Hughes� Projections for strictness analysis� Proceedings of

the ACM Conference on Functional Programming Languages and Computer

Architecture �FPCA
���� LNCS ���� Springer�Verlag� �����

�Wad��� P� Wadler� Linear types can change the world(Programming Concepts and

Methods� M� Broy and C� Jones� eds� North Holland� �����

�Wra��� S� Wray� A new strictness detection algorithm� Proceedings of the Work�

shop on Implementation of Functional Languages
Aspen#as� Sweden�� L�

Augustsson et� al�� eds� Report ��� Programming Methodology Group� De�

partment of Computer Sciences� Chalmers University of Technology and

University of G#oteborg� G#oteborg� Sweden�

Bibliography ���

�You��� J� Young� The Theory and Practice of Semantic Program Analysis for

Higher�Order Functional Programming Languages� Ph�D� thesis� Research

report YALEU�DCS�RR����� Yale University� �����

