
Coordinated Multilevel Buffer Cache
Management with Consistent Access

Locality Quantification
Song Jiang, Kei Davis, and Xiaodong Zhang, Senior Member, IEEE

Abstract—This paper proposes a protocol for effective coordinated buffer cache management in a multilevel cache hierarchy typical of

a client/server system. Currently, such cache hierarchies are managed suboptimally—decisions about block placement and

replacement are made locally at each level of the hierarchy without coordination between levels. Though straightforward, this approach

has several weaknesses: 1) Blocks may be redundantly cached, reducing the effective total cache size, 2) weakened locality at lower-

level caches makes recency-based replacement algorithms such as LRU less effective, and 3) high-level caches cannot effectively

identify blocks with strong locality and may place them in low-level caches. The fundamental reason for these weaknesses is that the

locality information embedded in the streams of access requests from clients is not consistently analyzed and exploited, resulting in

globally nonsystematic, and therefore suboptimal, placement and replacement of cached blocks across the hierarchy. To address this

problem, we propose a coordinated multilevel cache management protocol based on consistent access-locality quantification. In this

protocol, locality is dynamically quantified at the client level to direct servers to place or replace blocks appropriately at each level of the

cache hierarchy. The result is that the block layout in the entirely hierarchy dynamically matches the locality of block accesses. Our

simulation experiments on both synthetic and real-life traces show that the protocol effectively ameliorates these caching problems. As

anecdotal evidence, our protocol achieves a reduction of block accesses of 11 percent to 71 percent, with an average of 35 percent,

over uniLRU, a unified multilevel cache scheme.

Index Terms—Replacement algorithm, locality, multilevel caching, networked file system.

Ç

1 INTRODUCTION

WITH the ever-growing performance gap between
memory and disk and rapidly improving CPU

performance, efficient cache management is becoming an
increasingly important consideration in system design. In a
client/server system using distributed caches, good buffer
cache management is critical to overall system performance.
Researchers and practitioners seek to make the best use of the
available buffer cache (henceforth just cache) along the data
paths between disk and processor to satisfy requests before
they reach disk surfaces. In addition to caches in clients,
blocks may be cached in servers and disk built-in caches.
Together these comprise a multilevel cache hierarchy.

1.1 Challenges in Hierarchical Caching

Though hierarchies of cache resources are, in aggregate size,
increasingly large, the problem of making them work
together to deliver performance commensurate with their
aggregate size has not been satisfactorily solved. There are
two challenges in achieving this goal.

The first challenge comes from weakened locality in low-
level caches.1 Caching works because of the existence of
(temporal) locality, which is an intrinsic property of
application workloads. Only a first-level cache is exposed
to the original locality and, so, has the highest potential to
exploit it. Lower-level caches service misses in higher levels.
Thus, a stream of access requests from a client, as seen by a
lower-level cache, has been filtered by the higher-level
caches. Assuming that caching at higher levels is, to some
degree, effective, the result is that the access stream seen by
lower-level caches has weaker locality than is seen at higher
levels. Williamson provides a more in-depth explication of
this filtering effect and some of its implications [30].

The performance of widely used recency-based replace-
ment policies, such as least recently used (LRU), can be
significantly degraded when they are used below the first
level. Muntz and Honeyman [22] and Zhou et al. [34]
observed this performance loss. The conclusion is that
employing an independent replacement policy below the
first level loses opportunities to exploit the original locality
information, i.e., the block access history at the client. Thus,
the first challenge is making replacement decisions at all
levels based on the original access stream which is only
available at the first level.

The second challenge is to eliminate redundancy—cach-
ing of the same block at more than one level on its retrieval
route. Because of redundancy, for some access patterns, the
effective aggregate size of a multilevel cache may be no

IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 1, JANUARY 2007 1

. S. Jiang is with the Department of Electrical and Computer Engineering,
Wayne State University, Detroit, MI 48202.
E-mail: sjiang@eng.wayne.edu.

. K. Davis is with the Performance and Architecture Laboratory, Computer
and Computational Sciences Division, Los Alamos National Laboratory,
Los Alamos, NM 87545. E-mail: kei.davis@lanl.gov.

. X. Zhang is with the Department of Computer Science and Engineering,
Ohio State University, Columbus, OH 43210.
E-mail: zhang@cse.ohio-state.edu.

Manuscript received 3 Mar. 2005; revised 11 Nov. 2005; accepted 18 July
2006; published online 22 Nov. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0067-0305.

1. One level of cache is lower than another if it is further from the client.
A first-level cache is at the highest level, residing in a client.

0018-9340/07/$20.00 � 2007 IEEE Published by the IEEE Computer Society

larger than that of the single level of cache with largest size.
For a multilevel cache hierarchy, we propose using a
unified replacement protocol that can determine the
appropriate place for each block to be cached (if it should
be cached), thus eliminating redundancy. The result is a
cache hierarchy with an effective aggregate size equal to the
sum of the cache sizes at each level.2

There may be multiple clients at the first level in the
hierarchical cache system. In such a system, each client,
along with its lower levels of caches, exhibits the afore-
mentioned weakened locality and redundant caching
problems. The possibility of coordinating the caches among
the peer clients is beyond the scope of this paper.

1.2 Possible Solutions: Custom Second-Level
Replacement and Unified LRU

Recent work addresses each of the two challenges, but most
of that work addresses only one or the other. Multi-Queue
[34] and unified LRU [31] are representative.

Multi-Queue (MQ) is a custom second-level replacement
algorithm. To overcome LRU’s poor performance in the
presence of weak locality, MQ uses access frequency as the
measure of block locality. It maintains multiple queues
corresponding to disjoint ranges of access frequencies and
uses the access frequencies of blocks for assignment to
queues. Blocks migrate between queues, or are removed,
according to their dynamically changing access frequencies.
By maintaining a deep access history, MQ can achieve a
higher hit ratio than LRU at the second level. Willick et al.
also found that frequency-based replacement policies do
better than recency-based ones for network file servers [28].
However, frequency-based replacement schemes have two
weaknesses in the context of multilevel caching. First, like
the prototypical frequency-based algorithm least frequently
used (LFU), they respond slowly to changes in access
patterns and incur a high bookkeeping overhead. Second,
because only clients have the original locality information,
the effectiveness at lower levels is limited by the attenuation
of locality information.

Wong and Wilkes proposed eliminating redundancy by
simply applying a unified LRU protocol across a two-level
cache [31]. In their scheme, the top of the LRU stack resides
in the client and the remainder in the second level (built-in
disk-array cache in their case). Though this protocol has a
significant advantage over independent replacement deci-
sions at each level by eliminating redundancy, it has two
critical weaknesses. First, a unified protocol built on LRU
may not work well because LRU only predicts that a block
will be reaccessed during its stay in the stack, but does not
predict where in the stack the block will be when
reaccessed. Thus, blocks that would be better stored in the
second level of the cache start their journeys in the first level
and move to the second step by step. Because they are not
quickly evicted from the first-level cache after use, they use
space better allocated to blocks with stronger locality.
Second, it may generate undesirable demotions because any
access that is not a hit in the first level results in a demotion

from the first level, which forces a demotion from the
second level, and so on to an eviction from the bottom. It
has been shown that the benefits of coordinated cache
management can be nullified by the cost of demotions when
I/O bandwidth is below a certain threshold [11].

Schemes addressing the concerns of multilevel cache
hierarchies must be evaluated in a systematic fashion. Chen
et al. provide a comprehensive framework in which a
multidimensional space of multilevel schemes may be
evaluated [12]. Their framework consists of various
combinations of three scheme elements, namely, cache
collaboration, local cache replacement algorithms, and local
optimization. While their work represents a milestone in the
evaluation and understanding of multilevel cache manage-
ment, we evaluate MQ, unified LRU, and the protocol we
propose in the context of a framework described in this
paper.

1.3 Our Approach

We address the challenges in two steps. First, we propose a
new measure for quantifying locality. We then develop an
efficient mechanism for distributing the cached blocks in
the cache hierarchy according to this locality measure.

We characterize two attributes of a locality measure,
accuracy and stability. Intuitively, accuracy characterizes
how well a locality measure predicts actual locality, while
stability characterizes the locality measure’s sensitivity to
changes in its input. Because the positioning of blocks in the
cache hierarchy is based on the locality measure, blocks
must be rearranged when their locality values change.
Movement between levels of the cache incurs a commu-
nication cost, hence the stability of the measure is critical.

After developing a locality measure that demonstrates
high accuracy and stability, we design a client-directed file
block placement and replacement protocol. The effective-
ness of our proposed protocol is evaluated relative to its
satisfaction of three criteria: 1) The multilevel cache retains
the same hit ratio as that of a single level cache with size
equal to the aggregate size of the multi-level cache,3

2) localities of blocks are accurately quantified, and
3) communication overheads between caches are kept low.

2 QUANTIFYING LOCALITY FOR HIERARCHICAL

BUFFER CACHING

While there is a shared intuitive notion of locality, it
appears that there is no single quantitative measure that
would be ideal in all circumstances. In practice, every
replacement algorithm either implicitly defines a locality
measure (such as LRU) or seeks to optimize against an
explicit measure.

2.1 Locality Measures

A block reference stream is represented as a sequence
fRtjt ¼ 0; 1; 2; . . .g. Time t is virtual, defined as the block
index in the reference stream. In the stream, the block
accessed at time t is Rt. The distance between two references
Ri and Rj is the number of other distinct blocks accessed
between time i and time j. If, for i � j, Ri ¼ Rj and, for all k

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 1, JANUARY 2007

2. This is only achievable when there is one client cache at the first level
of the hierarchy. In the multiclient case, redundancy is allowed so long as
there is no duplicated block on any path between a client and the server. 3. Again, an adjustment must be made in the multiclient case.

such that i < k < j, Ri 6¼ Rk, the distance is called the reuse
distance of Ri. For example, in a stream segment denoted by
fa; b; c; b; ag, the reuse distance of block a is two.

As an offline optimal replacement strategy, OPT uses the
distance between the current time and the next reference to
a block as the measure of locality of the block [3]. We refer
to this as the OPT distance (OD). Because OPT replacement
maximizes the hit ratio for a given cache by selecting a
block with the largest OD for replacement, OD is the most
accurate characterization of locality.

The recency distance (RD), or just recency, of a block is the
distance between the current time and the last reference to
the block. (Note that the recency of a block increases with
time as other blocks are accessed.) Least recently used (LRU)
replacement is based on the assumption that a block
accessed recently will be accessed again soon. The LRU
stack, originally conceived for the implementation of LRU,
stores blocks in the order of their references with the most
recently accessed at the top of the stack. Thus, blocks are
ordered according to their RD. When a block is accessed, it
is placed at the top of the stack; if that block was not in the
stack and adding it would exceed the stack size limit, the
bottommost block is demoted—removed from the stack.
Because RD is such a useful measure in the context of
replacement algorithms, the LRU stack is widely used to
study and describe other replacement algorithms even
though they may not actually use RD and their natural
implementations may not employ an LRU stack [17], [18],
[25]. We note that both OD and RD are measured with
respect to the current time, so they may change at every
timestep. Because they are dynamic, their stability is of
potential concern.

In unified LRU replacement, a block is demoted when its
recency exceeds the local LRU stack size [31]. Were it
known at the time of access of a block what its recency
would be at the time of the next access, it would be cached
directly at the level of cache corresponding to that recency

(or not cached at all if the recency exceeds the aggregate

cache size), thus avoiding demotions. This motivates the

use of the distance between the last reference and the next

reference to a block, the current reuse distance (CRD) to

quantify locality. After a block is accessed, its CRD will not

change until its next reference, which should give good

stability. Like OD, CRD depends on a future access time

and, so, is not determinable online.
To predict CRD online we could use the distance

between the last reference to a block and the one before

the last, the last reuse distance (LRD). (The LRD is deemed

infinite if there is no penultimate reference.) However,

when there is an abrupt change in the access pattern, LRD

may not accurately predict CRD. We use RD, which

increases with time toward CRD, to predict CRD once RD

exceeds LRD. That is, we use the larger of LRD and RD,

which we refer to as LRD-RD, to predict CRD. All of these

locality measures are illustrated in an LRU stack shown in

Fig. 1. We will develop our caching protocol based on a data

structure derived from the LRU stack.

2.2 Comparisons of Locality Measures

A replacement algorithm works by ranking blocks accord-

ing to some locality measure; the block with the lowest rank

is the first to be demoted. Each of the four measures, OD,

RD, CRD, and LRD-RD, has an associated replacement

algorithm. For example, the measure used by the OPT

replacement algorithm is OD and the measure used by LRU

is RD. How well a replacement algorithm performs as a

unified replacement algorithm for a multilevel cache

hierarchy is determined by the accuracy and stability of

the corresponding locality measure. To evaluate and

compare the behaviors of these measures, we use six

small-scale workload traces, cs, glimpse, zipf, random, cpp,

and multi. We briefly describe these traces and give

references to complete descriptions.

JIANG ET AL.: COORDINATED MULTILEVEL BUFFER CACHE MANAGEMENT WITH CONSISTENT ACCESS LOCALITY QUANTIFICATION 3

Fig. 1. In the LRU stack, for a given block, the position of the last access to the block corresponds to its LRD, its current position in the stack

corresponds to its RD, and the position of its next access corresponds to its CRD. Before its current position exceeds its last position, (a) LRD-RD is

LRD; after that, (b) LRD-RD is RD. This allows LRD-RD to accurately predict CRD. The illustration also shows that RD and OD change with every

timestep.

1. cs is a trace that was collected by running an
interactive query answering tool called cscope on a
set of indexed C source programs [9]. The trace
contains 6,781 references to 1,409 distinct blocks.

2. glimpse is a text information retrieval utility trace
[9]. The search is facilitated by prebuilt indexes on
the text files. The trace has 6,015 references to
2,529 distinct blocks.

3. zipf is a synthetic trace in which only a few blocks
are frequently accessed. Formally, the probability of
a reference to the ith block is proportional to 1=i. The
trace has 115,467 references to 10,500 distinct blocks.

4. random is a synthetic trace with a temporally
uniform distribution of references across all the
accessed blocks. The trace has 100,000 references to
10,000 distinct blocks.

5. cpp is a trace of the GNU C preprocessor cpp run
against the FreeBSD operating system kernel source
of about 11 MB [9]. The trace has 9,047 references to
1,223 distinct blocks.

6. multi is obtained by executing the four workloads,
cpp, gnuplot, glimpse, and postgres, concurrently,
which covers a 29 MB data set. gnuplot is an
interactive plotting program and postgres executes
join queries on four relations in a postgres relational
database. Details of the trace can be found else-
where under the name of multi3 [19]. The trace has
30,241 references to 7,454 distinct blocks.

The effectiveness of each of the four measures depends on
the access patterns of the workloads. There are three
reasons for having chosen these traces. First, each of these
traces shows a distinct data access pattern or a combination
of distinct patterns. Traces cs and glimpse have a repeating
access pattern, where all blocks are repeatedly accessed in a
regular pattern. Trace cpp has a so-called LRU-friendly
access pattern where blocks accessed more recently are the
ones more likely to be accessed again soon. Trace multi
provides a mix of sequential, repeating, and temporally
clustered references. Second, these traces provide represen-
tative access patterns. Repeating and sequential access
patterns are common in database applications. Random
access patterns are observed in the index scan and hash-join
database operations. Zipf-like access patterns are typical of
file access in Web servers. Mixed access patterns are
expected in compute servers shared by multiple users.
Third, these traces have frequently been used in recent
studies of replacement algorithms and their characteristics
and their interactions with the replacement algorithms are
well understood.

For a given measure, when there is a reference to a block,
the locality value of the block, and possibly those of other
blocks, changes. For each measure, we maintain a list of
blocks ordered by their locality values. The list is updated at
each block reference. Each list is divided into 10 segments of
equal size, corresponding to a hypothetical level in a cache
hierarchy.4 The number of references to each segment is
recorded to determine the accuracy of the measure. Block
movements across each segment boundary are counted to
determine the stability of the measure. For example, if the

given measure is RD, the list is actually an LRU stack of
unbounded size. We assume a cold cache (or empty list) in
the evaluations, so we take cold access misses into account.

We first measure accuracy. An accurate locality measure
should generate a distribution of hits that decreases with
the distance from the head of the list. This is desirable
because access to higher levels is faster. Fig. 2 shows, for
each measure and each workload, the relative number of
references to each segment of the list. We make the
following observations:

1. OD provides the optimal distribution. The higher a
segment is (closer to the list head and with a smaller
segment number in Fig. 2), the higher the reference
ratio the segment achieves with OD. In contrast, RD
provides the worst distribution, though it attempts
to predict OD. This is especially apparent for the
workloads cs and glimpse with repeating access
patterns. Most of their references go to the low
segments (after segment 9 in cs and after segment 3
for glimpse). This indicates that unified LRU replace-
ment cannot achieve high hit ratios unless the
aggregate cache size can hold all the accessed blocks.
RD only performs well on the workloads with an
LRU-friendly access pattern, such as cpp.

2. CRD performs well for all of the workloads, a
foregone outcome. Except for trace random, LRD-RD
has performance very close to CRD, though it does
not depend on future knowledge. Random replace-
ment, wherein blocks are randomly selected for
replacement, has a hit ratio proportional to the cache
size. All of the online algorithms perform no better
than random replacement for trace random, also a
foregone outcome.

3. LRD-RD exhibits better accuracy than RD for work-
loads cs, glimpse, zipf, and multi. For the LRU-
friendly workload cpp, both RD and LRD-RD per-
form very well, with RD performing only slightly
better.

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 1, JANUARY 2007

4. The improbably large depth of 10 was chosen to give a fine-grained
measure of stability.

Fig. 2. Reference ratios to each of the segments (the ratios between the

number of references to a segment and the number of all references in a

workload). It also shows the cumulative reference ratios for the first

N segments in each workload, where N is 1 through 10.

Next we consider stability. Fig. 3 shows the ratios of

block movements across each of the segment boundaries

and the number of all references for each of the four

measures. For example, the first point from the left on a

curve shows the fraction of all references that blocks cross

the boundary between the first and second segments. A

small ratio indicates high stability at that boundary. We

make the following observations:

1. As expected because they are dynamic, OD and RD
have the highest movement ratios. Comparatively,
CRD and LRD-RD have much lower movement ratios.

2. The difference in the ratios for CRD (respectively,

LRD-RD) and OD (respectively, RD) are especially

pronounced with the repeating pattern workload

glimpse. However, even for the LRU-friendly work-

loads like cpp and zipf, the differences are still large.

This demonstrates that an online unified caching

protocol based on LRD-RD promises a much smaller

additional communication cost than one based on RD.

3. The ratios for LRD-RD are smaller than those for

CRD in most cases. Thus, while the accuracy of CRD

is optimal, its stability is not.

JIANG ET AL.: COORDINATED MULTILEVEL BUFFER CACHE MANAGEMENT WITH CONSISTENT ACCESS LOCALITY QUANTIFICATION 5

Fig. 3. Comparisons of the ratios of the number of block movements across a segment boundary of the ordered lists and the number of total

references for the four measures RD, OD, CRD, and LRD-RD on various workloads. OD and RD consistently exhibit high movement ratios, while

CRD and LRD-RD have low movement ratios.

The time cost of bookkeeping for each of these measures
differs greatly. On average, the costs for OD and CRD are
more than a hundred times larger than those of RD and
LRD-RD. Table 1 summarizes the relative attributes of the
four measures, showing that LRD-RD is a desirable
measure for designing a unified caching protocol.

3 THE UNIFIED LEVEL-AWARE CACHING

PROTOCOL

We have shown that the ordering defined by LRD-RD
provides an accurate indicator for where a block should be
cached in a cache hierarchy or that it should not be cached
at all.5 Based on this ordering, we propose a multilevel
cache placement and replacement protocol, called Unified
Level-Aware Caching (ULC), to exploit hierarchical locality.

Based on access patterns and the sizes of the cache at
each level, ULC dynamically ranks accessed blocks into
levels L1; L2; . . . ; Ln, corresponding to each level of cache,
and Lout (signifying not to be cached) according to their
LRD-RD positions. The size of the first-level cache
determines the number of L1 blocks and similarly for the
other levels. To separate the blocks that reside in different
levels of cache, we define the block with the least locality at
each level to be a yardstick block.

ULC runs on the client and lower level caches are not
responsible for extracting locality information; they merely
respond to directives from the client. Every block request
from the client-level cache carries a level tag and, if the
attached tag matches a cache’s level, it will cache the
retrieved block. Otherwise, the block is discarded after the
block is sent to the next higher level cache. When the block
positions need adjusting, the client sends block demotion
instructions down the hierarchy, to which the caches
respond appropriately.

Our client-directed protocol attempts to answer the
following questions in designing hierarchical caching
protocols: 1) How do we effectively and consistently exploit
locality in the entire cache hierarchy; 2) how do we make
the exploited locality usable by all caches in the hierarchy;
and 3) how do we minimize the overhead of the protocol.

3.1 A Detailed Description

In Section 2.2, we showed that the LRD-RD measure is a
promising basis on which to build a multilevel caching
protocol. However, an implementation of an algorithm

directly based on LRD-RD ranking will take at least
�ðlognÞ time, where n is the number of distinct accessed
blocks, to insert a newly accessed block into the ordered list.
To develop an efficient algorithm with Oð1Þ time for block
insertion, we transform the process of determining the
position of a block in an LRD-RD ordered list into two steps:
1) When a block is accessed, its recency is 0, so its LRD-RD
is LRD, which is the recency at which it was just accessed.
We use the LRD to determine in which segment the block
will be cached at the time of retrieval. 2) Once a block is
assigned to a specific segment, we use RD to determine its
position in the segment.

As shown in Fig. 4, recently accessed blocks are
maintained in a LRU stack representing the entire cache
hierarchy, to which we refer as the uniLRU-stack. These
blocks could be cached in any level or even not cached.6 For
each level of cache, there is a yardstick block Yi in uniLRU-
stack, which is the block in cache level i that has the largest
recency value in Li. The size of uniLRU-stack is actually
determined by the position of Yn, the last yardstick, which
always sits at the bottom. Any blocks with recencies larger
than that of Yn will be removed from uniLRU-stack and
become Lout blocks, which are not cached at any level.
Usually, when a block gets accessed with a recency between
the recencies of Yi�1 and Yi, the block becomes an Li block.
All of the blocks cached at the same level can be viewed as a
local LRU stack, called LRUi, where the order of blocks is
determined by their recencies in uniLRU-stack and its size
does not exceed the size of that level of cache. The block to
be replaced on level Li is the bottom block of stack LRUi.
For the requested blocks that are neither cached in LRU1

nor going to be cached there because their LRDs are larger
than the recency of Y1, we set up a small LRU stack called
tempLRU to temporarily store these blocks so that they can
be quickly discarded from the L1 cache.

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 1, JANUARY 2007

TABLE 1
Comparisons of the Accuracy of Four Measures of Locality,

Their Stability, and Their Implementability

Fig. 4. An example showing the data structure of ULC for a three-level
hierarchy. The blocks with their recencies less than that of yardstick Y3

are kept in uniLRU-stack. The level status (L1, L2, or L3) of a block is
determined by its position between two yardsticks, where it was
accessed last time. Its recency status (R1, R2, or R3) is usually
determined by its position between two yardsticks, where it stays
currently. To decide which block should be replaced in each level, the
blocks at the same level can be viewed as being organized in a separate
LRU stack (LRU1, LRU2, or LRU3) and the bottom block is for
replacement.

5. Those requested blocks that should not be cached in the first-level
cache are still brought into the client for use, but will not be cached there,
i.e., these blocks will be quickly replaced from the client after the reference.

6. In an implementation, only some metadata, such as a block identifier
and two statuses used in the ULC protocol, are stored in the stack.

There are two possible structures for the cache hierarchy.
One is the single-client structure in which there is only one
client connected to one server and another is the multiclient
structure in which more than one client shares the same
server and blocks requested by different clients are shared
in the server.7 There are two additional challenges for the
multiclient ULC protocol: 1) how to cache shared blocks in
server caches, which could carry different level tags set by
different clients, and 2) how to allocate the server cache to
different clients.

3.1.1 The Single-Client ULC Protocol

The single-client ULC algorithm runs on the client which
holds the first-level cache. It has the knowledge of the size
of the cache on each level. For each block in the uniLRU-
stack, there are two associated statuses: level status and
recency status. Level status indicates at which level the
block is cached. When a block is accessed, we need to know
its recency to determine its level status. The recency is
actually its LRD. It takes at least �ðNÞ time to maintain the
exact recency information for all blocks, where N is the
aggregate size of the caches. In fact, we only need to know
the recencies of the two yardsticks the recency lies between.
Thus, we maintain a recency status Ri for each block, which
usually indicates its recency is between the recencies of
yardsticks Yi�1 and Yi (or just less than Y1 if i is 1). The
average cost to maintain recency statuses is Oð1Þ, which will
be explained.

Initially, if Li is not full and the levels that are higher are
full, any requested Lout blocks get level status Li and reside
in level Li. If all the caches are full, any blocks accessed
when they are not in the uniLRU-stack are given level status
Lout. There are two circumstances for a block to be outside
of the uniLRU-stack. One is that the block is accessed for the
first time, another is that block has not been accessed for a
long period of time and has left the uniLRU-stack from the
bottom. For these blocks, their level status is Lout and their
recency status is Rout.

We define an operation for yardsticks in the uniLRU-stack
called yardstickadjustment, which moves a yardstick from the
current yardstick block with level status Li in the direction
toward the stack top to the next block with level status Li.
All the blocks it passes, including the current yardstick
block, change their recency status from Ri to Riþ1. While
any newly accessed blocks have recency status R1, their
recency statuses are changed by yardstickadjustment after
that. We note that the operation can cause yardstick
inversion, that is, yardstick Yj can be closer to the stack top
than Yi, where i < j. Though yardstick inversion is allowed,
it happened only occasionally in our experiments. This is
because a reversed yardstick will cause prompt block
promotions. These promotions force LRU bottom block
demotions, which cause the yardsticks to recover their
normal orientation. For the yardstickadjustment operation, all
yardsticks move in only one direction, toward the stack top.
All of the accessed blocks are placed at the stack top. So, on
average, a yardstick moves by at most one block with a
block access, giving Oð1Þ cost.

When a yardstick block changes its position in the
uniLRU-stack, we need to perform yardstick adjustment to
ensure that the yardstick is on the block with the correct
recency status and with the largest recency among the

blocks at that level. Demoting a block into a low-level cache
is equivalent to moving the bottom block of local stack
LRUi into LRUiþ1, which is sorted on their recencies in the
uniLRU-stack.

There are two types of requests in ULC, both are sent
from the client to the lower-level caches to coordinate
various levels of caches to work under a unified caching
protocol.

1. retrieveðb; i; jÞ, ði � jÞ: Retrieve block b from level Li
and cache it on level Lj when it passes level Lj on its
way to level L1.

2. demoteðj; iÞ, ði > jÞ: Demote the yardstick for level j
to level jþ 1, (i.e., from the bottom of local stack
LRUj to the top of local stack LRUjþ1). Repeat the
operation at the next cache level until i ¼ jþ 1.

If there is a reference to block b with level status Li and
recency status Rj, there are only two cases to consider: i ¼ j
and i > j. That i � j is invariant: When block b has level
status Li, it stays above yardstick Yi; any block that stays
above yardstick Yi must have recency status Rj, where j � i,
otherwise yardstick Yi must have passed the block and,
during yardstickadjustment, any block passed by Yi must
change its recency status to Riþ1. When block b is
referenced, it is moved to the top of the uniLRU-stack and
its recency status becomes R1. This also makes it stay at the
top of stack LRUi. If j > 1, block b goes to stack tempLRU in
the client and will be replaced soon from the client cache.
Then, for each of the two cases, we act as follows: For i ¼ j,
block b remains in its current level of cache with the same
level status (retrieveðb; i; iÞ). For i > j, because block b will
be moved from level Li and cached at level Lj
(retrieveðb; i; jÞ), a space needs to be freed at level Lj. We
demote the yardstick block Yj to the next lower-level cache,
whose yardstick block may have to be demoted in turn if its
status level is greater than Li (demoteðj; iÞ). The protocol is
described using pseudocode in Fig. 5.

3.1.2 The Multiclient ULC Protocol

When there are multiple clients sharing one server, the
caches in the server are no longer solely used by one client.
In the single-client ULC protocol, the number of blocks with
level status Li, or the size of stack LRUi, is determined by
the size of the level Li cache. If the cache at level Li is shared
by multiple clients, an allocation policy is needed on
level Li for good performance of the entire system. To
obtain the best performance, it is known that allocation
should follow the dynamic partition principle, where each
client is allocated a number of cache blocks that varies
dynamically in accordance with its working set size.
Experience has shown that global LRU performs well by
approximating the dynamic partition principle [8]. Thus, we
use a global LRU stack called gLRU in the server to facilitate
the allocation operation. The block order in gLRU is
determined by the block recencies, which are determined
by the timings of requests from clients requiring a block be
cached in the server. The bottom block of gLRU is the one to
be replaced when a free buffer is needed. For each block in
gLRU, we record its owner—the client most recently
requesting the block to be cached in this server. A block is
cached at the highest possible level under the instructions
from the clients. If there is only one client, the bottom block
of gLRU is always the yardstick blockYi in uniLRU-stack and is

JIANG ET AL.: COORDINATED MULTILEVEL BUFFER CACHE MANAGEMENT WITH CONSISTENT ACCESS LOCALITY QUANTIFICATION 7

7. Here we call the high-level cache the client and the low-level cache the
server when discussing two adjacent levels.

also the bottom block of stack LRUi in the client. Because the
server cache is shared among the clients, the bottom block of
LRUi could have been replaced in the server. If this is the case,
it is equivalent to shrinking the cache size of the server
dedicated to the client. So, when a block is replaced from
gLRU, a message is sent to its owner client so that a yardstick
adjustment can occur there. Correspondingly, the size of
LRUi is reduced by one. The owner notifications of block
replacements can be delayed until the next requested block is
sent to its owner client without affecting its correctness. At
that time, they are piggybacked on the next retrieved block,
thus saving extra messages. Fig. 6 shows an example to
illustrate the multiclient case. By dynamically adjusting the
yardsticks of affected clients based on the information
provided by the allocation policy, we have a ULC protocol
running in clients allowing their low level caches to change
their sizes dynamically. The changing sizes are the result of
the allocation policy with the goal of high performance for the
entire system.

4 PERFORMANCE EVALUATION

This section presents our trace-driven simulation results.
We compare ULC with two other multiclient caching
protocols: independent LRU, or indLRU, which is a
commonly used protocol, and unified LRU, or uniLRU, an
LRU-based unified caching protocol [31].

4.1 Performance Metric

We use block hit ratio and average block access time, Tave, to
evaluate the performance of various protocols. Tave mea-
sures the average time required to access a block perceived
by applications. The access time is determined by the hit
ratios and miss penalties at different levels of the caching
hierarchy, as well as other communication costs. In general,
we calculate Tave for an n-level cache hierarchy as follows:

Tave ¼
Pn

i¼1 hiTi þ hmissTm þ Tdemotion, where hi is the hit
ratio at level Li cache, Ti is the time it takes to access the
cache at level Li, hmiss is the miss ratio for the cache
hierarchy (equivalent to 1�

Pn
i¼1 hi), Tm is the cost for a

miss, and Tdemotion is the demotion cost for block placements
required by a unified replacement protocol. If we assume
the demotion cost for a block from level Li to Liþ1 is Tdi and
the demotion rate between level Li and Liþ1 is hdi, then
Tdemotion ¼

Pn�1
i¼1 Tdihdi. We do not consider the situation

where demotions are delayed so that their costs could be
hidden from applications for two reasons. First, demotions
are highly likely to occur in a bursty fashion, especially for
an LRU-based unified replacement, where up to 100 percent
of the references incur demotions. A small number of
dedicated buffers makes it difficult to buffer the delayed
blocks, thus its performance gain is very limited. Second,
reserving a large number of buffers for delayed demotions
effectively reduces the cache size and would reduce the hit
ratios.

Specifically, for a two-level client-server cache hierarchy,

the average access time is as follows:

Tave ¼ hcTc þ hsTs þ ð1� hc � hsÞTm þ hc�sTc�s;

where hc and hs are the hit ratios for the client and server,

respectively, Tc and Ts are the costs for a hit in the client and

server, respectively, and Tm is the cost for a miss in the

server. If the disk access time for a block is Td, Tm can be

regarded as Ts þ Td, hc�s is the demotion rate between the

client and the server. Tc�s is the cost for a demotion. We

assume Tc � 0, the demotion cost Tc�s is approximated as

the server hit time Ts. Then,

Tave � hsTs þ ð1� hc � hsÞTd þ hc�sTs:

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 1, JANUARY 2007

Fig. 5. The single-client ULC Protocol.

4.2 Simulation Environment

We use trace-driven simulation for the evaluation. Our
simulator tracks the statuses of all accessed blocks and
monitors the requests and hits seen at each cache level and
the demotions at each level boundary. We assume the size
of a cache block is 8 KB. We use seven large-scale traces to
drive the simulator: two synthetic traces, random and zipf,
and five real-life workload traces. We have described the
two synthetic traces in Section 2. Here, we significantly
increase the scale of the two traces: random accesses 65,536
unique blocks with a 512 MB data set. It has about 65 M
block references. zipf accesses 98,304 unique blocks with a
768 MB data set. It has about 98 M block references. The
three real-life traces used for the single-client simulation are
described as follows:

1. httpd was collected on a 7-node parallel Web server
for 24 hours [26]. The size of the data set served was
524 MB which is stored in 13,457 files. A total of
about 1.5 M HTTP requests are served, delivering
over 36 GB of data. We aggregate the seven request
streams into a single stream in the order of the
request times for the single client structure study.

2. dev1 is an I/O trace collected over 15 consecutive days
on a Red Hat Linux 6.2 desktop [6]. It includes text
editor, compiler, IDE, browser, e-mail, and desktop
environment usage. It has around 100 K references.
The size of the data set is approximately 600 MB.

3. tpcc1 is also an I/O trace collected while running the
TPC-C database benchmark with 20 warehouses on
Postgres 7.1.2 with Red Hat Linux 7.1 [6]. It has
approximately 3.9 M references. The data set size is
approximately 256 MB.

We also select three traces for multiclient simulation.
One of them is the original httpd trace with seven access
streams, each for one client. The other two multiclient traces
are as follows:

1. openmail was collected on a production e-mail
system running the HP OpenMail application for
25,700 users, 9,800 of whom were active during the
hour-long trace [31]. The system has six HP 9000
K580 servers running HP-UX 10.20. The size of the
data set accessed by all six clients is 18.6 GB.

2. db2 was collected by an 8-node IBM SP2 system
running an IBM DB2 database that performed join, set,
and aggregation operations for 7,688 seconds [26]. The
total data set size is 5.2GB and it is stored in 831 files.

For all the simulation experiments, we use the first one-
tenth of block references in the traces to warm the system
before the measurements were collected. The size of the
uniLRUStack is two times the number of blocks that the
aggregate caches can hold.

4.3 Comparisons of Multilevel Protocols in a
Three-Level Structure

To demonstrate the ability of multilevel caching protocols
(ULC, indLRU, and uniLRU) to accurately quantify locality
with stability, we test them in a three-level caching
hierarchy for the five single client traces, simulating a
scenario where the block retrieval route consists of a disk
array containing a large RAM cache, a server, and a client.
For a common local network environment, we assume the
cost to transfer an 8 KB block between the client and the
server through LAN is 0.4ms, the cost between the server
and the RAM cache in the disk array through SAN is 0.2ms,
and the cost of a block from a disk into its cache is 10ms

JIANG ET AL.: COORDINATED MULTILEVEL BUFFER CACHE MANAGEMENT WITH CONSISTENT ACCESS LOCALITY QUANTIFICATION 9

Fig. 6. An example explaining how a requested block is cached in the server cache and how the allocation policy adjusts the size of the server cache
used by various clients in a multiclient two-level caching structure. Originally, server stack gLRU holds all the L2 blocks from clients 1 and 2, which
are also in their LRU2 stacks, respectively (see (a)). Then, block 9 is accessed in client 1. Because block 9 is between yardstick Y1 and Y2 in its
uniLRU-stack, it turns into an L2 block and needs to be cached in the server. Because the server cache is full, the bottom block of gLRU, block 14, is
replaced, which will be notified to its owner, client 2, through a piggyback on the next retrieved block going to client 2 (delayed notification). After the
server cache reallocation, the size of server cache for client 1 is increased by 1 and that for client 2 is reduced by 1 (see (b)).

[31]. We assume the cache sizes of the client, the server, and
the disk array are 100 MB each for traces random, zipf, httpd,
and dev1, and the cache sizes are 50 MB each for trace tpcc1
due to its comparatively small data set. We report the hit
ratios at each of the three levels, demotion rates at each
boundary, and average access times for each workload with
the three multilevel caching protocols in Fig. 7.

Confirming the experimental results in [31], we observe
that there are significant performance improvements of
uniLRU over indLRU for all the five traces, from 17 percent
to 80 percent reduction on average access time (see the third
graph). Actually, these are the results of two combined effects
of uniLRU: 1) increasing the cache hit ratios and 2) generating
additional demotion cost. UniLRU eliminates the redun-
dancy in the hierarchy, making the low levels of caches
contribute to the hit ratio just as if they stayed in the first level.
For example, in a random access pattern, the contribution of a
cache to the hit ratio should be proportional to its size.
However, the second and third levels of caches attain much
lower hit ratios (1.7 percent and 0.3 percent, respectively)
than that of first-level cache (19.5 percent) for trace random
in indLRU (first graph). The unified replacement protocol
uniLRU makes makes much better use of the lower-level
caches. Their hit ratios (19.6 percent and 19.5 percent,
respectively) are almost the same as that of first-level cache.
However, this improvement comes at a high price: high
demotion rates. For example, in trace random, uniLRU has a
first boundary demotion rate of 80.5 percent, which means
80.5 percent of block references accompany write-backs to
the server. Furthermore, it has a 60.9 percent demotion rate
at the second boundary (second graph). The worst case for
the demotion rates of uniLRU is trace tpcc1, which has a
looping access pattern. Its first boundary demotion rate is
100 percent! This is because uniLRU has little ability to
predict the level where an accessed block will be accessed.
For a looping access pattern, blocks are accessed at a large
recency equal to the loop distance, which implies almost all
the blocks of tpcc1 are accessed after they are demoted into
the second level of cache. So, the hit ratio of the second level
cache is very high (92.5 percent) and 44.7 percent of the
average access time is spent on the demotion. According to
the requirement on the ability to accurately quantify locality
for a multilevel caching protocol, the distribution of the
level L1 hit ratio (0.03 percent) is much less than the L2 hit
ratio (92.5 percent) under uniLRU shows a bad case.

Compared with uniLRU, the ULC protocol has an access-
time-aware hit ratio distribution along the levels of caches:
more hits appearing on high levels. For example, the hit

ratios of the levels L1, L2, and L3 are 50.3 percent,
45.1 percent, and 3.4 percent, respectively, for trace tpcc1.
And, such a distribution is achieved without paying the
high costs of demotions. For example, the two boundary
demotion rates of tpcc1 are 1.4 percent and 1.3 percent,
respectively (second graph). It is also shown that ULC has
significant demotion rate reductions over uniLRU for all
five traces. This explains why the proportion of demotion
cost in the average access time for ULC is much smaller
(from 1 percent to 8.3 percent with an average of 4.1 percent)
than that for uniLRU (from 12.6 percent to 44.7 percent with
an average of 21.5 percent) (third graph).

The access time breakdowns also suggest that ULC will
keep performing significantly better than uniLRU except for
trace random, even if we assume the demotions could be
moved off the critical path of response time. In fact, this is an
unrealistic assumption: Experiments running a TPC-C
benchmark on a client-server system have shown that
demotions can significantly delay the network and lower
the system throughput [11]. In summary, ULC achieves from
11 percent to 71 percent reduction on average access time with
an average of 35 percent over that of uniLRU.

4.4 The Performance Implication of System
Parameters

To be widely applicable, a caching protocol should
consistently deliver improved performance over existing
ones with a large range of system parameters such as cache
size and network bandwidth. For the convenience of
observing and comparing performance differences of the
protocols in this study, we choose a two-level cache
hierarchy to present our results. For the two-level hierarchy
evaluation, we include Multi-Queue (MQ). In a client-server
caching hierarchy, the environment that MQ is designed
for, we use MQ in the server and use LRU in the client
independently. There is a parameter in the MQ replace-
ment, called lifeTime, which determines the speed to decay
the frequency of a nonaccessed block. Because this para-
meter is workload dependent, we run each trace for
multiple sample lifeTime values in the range suggested in
[33] and report the best results of these runs. To see how
advanced local replacement algorithms and local optimiza-
tions suggested in the multicache evaluation framework
[12] could change the relative performance advantages of
ULC, we introduce a new protocol, called indARC, in which
both client and server use the ARC replacement algorithm
locally and independently. ARC represents the state-of-art
advanced local replacement algorithm [23], which has been

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 1, JANUARY 2007

Fig. 7. Hit ratios in each of the three levels, demotion rates at each of two boundaries (between L1 and L2, and between L2 and L3 cache), and

average access time for each workload with the multilevel caching protocols indLRU, uniLRU, and ULC.

sjiang
Note
redundant "makes"

deployed in IBM TotalStorage DS8000. Because of space
constraints, we report only the results for one synthetic
trace, zipf, and two real-life traces, httpd and dev1. The
results for other traces are consistent with these.

4.4.1 The Impact of Server Cache Size

Fig. 8 shows the average access times for each workload as the
server cache size changes for all five caching protocols: ULC,
uniLRU, MQ, indARC, and indLRU. An observation for the
indLRU hit ratio curves is that there is a segment of flat curve
for each workload with small server cache sizes. These curves
start to drop when the server cache sizes approach the client
cache size. This demonstrates the serious underutilization of
the server cache under indLRU due to the redundancy and
locality filtering effect. That is, under indLRU, a relatively
small server cache unfortunately has little contribution to the
reduction of the average access time in a system with a large
client cache size. This is consistent with the results from
another study [32], which suggests increasingly large built-in
disk caches help little with a comparatively large file system
cache under two independent LRU replacements. However,
such an observation does not exist for all three of the other
protocols, which achieve better performance than indLRU for
all the workloads.

The results also show that indARC has a substantially
smaller average block access times than indLRU, which
conforms to the conclusion in another paper [12] that
advanced local replacement algorithms and local optimiza-
tions can improve performance without explicit collabora-
tion. However, the performance of indARC still apparently
falls behind ULC, an aggressive collaboration scheme, which

demonstrates the collaboration scheme holds its advantages
over noncollaboration schemes for the tested workloads.

It is shown that, for most of the cases, the performance of
uniLRU is better than that of MQ, though MQ does not have
demotion costs. This reflects the merit of the unified caching
protocol, the elimination of data redundancy. It is also
shown that the performance gains of uniLRU over MQ are
increased with the increase of server cache size. Our study
shows that this is because MQ relies more on the reference
frequencies to make a replacement decision when the cache
size becomes large. Thus, MQ becomes less responsive to
the changing access patterns and less effective than LRU-
based protocols with large server cache sizes. For all the
traces, ULC achieves the best performance, steadily
decreasing the access time with the increase of server cache
sizes. Its high hit ratios and low demotion rates are the two
major contribution factors.

4.4.2 The Impact of Client Cache Size

Fig. 9 shows the average access times for each workload as
the client cache size changes. It is shown that uniLRU
benefits much more from the added client cache size than
indLRU and MQ. This is because increasing client size has
negative effects for indLRU and MQ: more data redundan-
cies in indLRU and weaker locality available for MQ in the
server. A unified caching protocol is immune to these
effects. However, the performance of uniLRU is worse than
that of MQ with small client cache sizes for zipf and dev1.
The explanation is that the smaller the client cache size is,
the more requested blocks are retrieved from outside of the
client. In uniLRU, every block brought from outside of the

JIANG ET AL.: COORDINATED MULTILEVEL BUFFER CACHE MANAGEMENT WITH CONSISTENT ACCESS LOCALITY QUANTIFICATION 11

Fig. 8. The average access times for protocols ULC, uniLRU, MQ, and indLRU with various server cache sizes. The client cache size is fixed. It is

256 MB for zipf, and 128 MB for httpd and dev1.

Fig. 9. The average access times for protocols ULC, uniLRU, MQ, and indLRU with various client cache sizes. The server cache size is fixed. It is

200 MB for zipf and dev1 and 150 MB for httpd.

client incurs a demotion. Small client caches cause large
demotion costs, which increase the access time in uniLRU.
Though ULC is also a unified caching protocol, it maintains
its best performance in the whole range of client cache sizes
because of its accurate block placement decisions.

4.4.3 The Impact of Network Speed

Fig. 10 shows the average access time for each workload as
we change the 8 KB block transfer time. It is expected that
the increase of transfer time has a more seriously negative
effect for unified protocols than for independent protocols
because the former has the additional demotion costs
determined by the transfer time. We see that the average
access time of uniLRU does increase more quickly than
those of indLRU and MQ. However, with low demotion
rates, ULC has a similar impact from the increase of transfer
time as indLRU and MQ do, even less impact for trace zipf
because of the contribution of transfer time to the miss
penalty and its much reduced miss ratios.

4.5 Comparisons of Caching Protocols for
Multiclient Workloads

Because the performance of uniLRU can significantly
deteriorate because of cache competition and data sharing
among clients for the multiclient structure, Wong and
Wilkes also proposed two adaptive cache insertion policies
to supplement their primitive protocol [31]. Among their
three multiclient traces, httpd, openmail, and db2, httpd is the
one with data sharing. While they did not state which
version of their unified LRU protocols should be used for a

specific workload, we ran all the versions and report the
best results for comparisons.

Fig. 11 shows that, for all the workloads, ULC achieves
the best performance and, in most cases, indLRU has the
worst performance. However, there are two cases where
indLRU beats uniLRU and MQ. One case is MQ with large
server cache sizes for trace httpd. When server cache sizes
become large enough, LRU’s inability of dealing with weak
locality becomes less destructive. However, as a frequency-
based replacement, MQ’s shortcoming of slowness to
respond to pattern changes becomes obtrusive. Another
case is uniLRU with small cache sizes for trace db2. This is
because db2 contains looping access patterns. LRU is not
effective on a workload with this pattern until all blocks in
the looping scopes can be held in the cache. Carefully
examining detailed experiment reports indicates that both
indLRU and uniLRU achieve very low hit ratios (6.9 percent
and 7.9 percent, respectively), for the two levels of caches,
compared with that of MQ (12.3 percent) and that of ULC
(35.1 percent). Thus, it is the large demotion cost of uniLRU
(with an average demotion rate 88.6 percent for the eight
clients, compared with that of ULC (7.2 percent)) that makes
the difference. With the increase of the cache size, some
looping scopes are covered by the combined two-level
caches, but not by a single level, which explains why the
performance of uniLRU starts exceeding that of indLRU
when the server cache size reaches 1GB. However, the
performance of uniLRU is worse than that of MQ because of
its looping access pattern. For workloads httpd and openmail,
uniLRU beats MQ by eliminating data redundancy.

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 1, JANUARY 2007

Fig. 10. The average access times for protocols ULC, uniLRU, MQ, and indLRU with various block transfer times. The client and server cache sizes

are fixed and are 100 MB each for all the workloads.

Fig. 11. The average access times of multiclient traces httpd, openmail, and db2 with various server cache sizes. Among them httpd is with seven

clients, openmail is with six clients, and db2 is with eight clients. Each client contains 8 MB, 1 GB, or 256 MB, respectively.

5 OTHER RELATED WORK

In addition to the work described in Section 1, there is some
other related work concerned with improving the perfor-
mance of the client-server hierarchy without changing I/O
interfaces or protocols. Chen et al. [11] proposed an
eviction-based placement policy that avoids the need to
push blocks down the hierarchy by reloading them, from
disk, into their correct positions. X-RAY is a mechanism for
achieving a high degree of cache exclusivity between client
and server [1]. There the server attempts to track the state of
the client’s LRU stack by recording disk requests and
tracking metadata writeback.

Jiang and Zhang propose the LIRS replacement algorithm
to address the performance degradation of LRU on work-
loads with weak locality [18]. In the LIRS stack, blocks with
small recencies are the ones that are retained. This single-level
cache replacement motivated us to investigate whether last
reuse distance (LRD) could be effectively used to predict
hierarchical locality such that blocks with different locality
values could be placed into correct cache levels. The adaptive
caching scheme ACME maintains multiple object orderings
simultaneously, each of which corresponds to a replacement
policy [2]. There, caching decisions are made according to the
current best-performing policy.

Work on cooperative caching [14], [24], [27] seeks to
coordinate the caches of multiple clients on a LAN to create
a fourth level in the network file system’s cache hierarchy.
Besides local cache, server cache, and server disk, data may
also be cached in another client’s cache. Associated issues
include availability of idle cache and consistent sharing.
While our ULC protocol is intended for the conventional
file cache hierarchy, there is evidence that it would also
enhance the effectiveness of data placement in cooperative
caching [16].

Regarding the cache hierarchy between processor and
memory, the interaction of replacements at various levels,
inclusivity, and the performance implications are not an
issue. This is because, moving down the hierarchy, each cache
is typically an order of magnitude larger than its predecessor
and these large ratios, together with their greatly differing
access latencies, make redundancy inconsequential. In fact,
multilevel inclusivity may be accepted as a principle to
simplify cache coherence [5]. In contrast, the sizes of caches in
the client-server hierarchy do not follow this regularity: A
client cache may be larger than the second level cache.

We assume that ULC works in a trusted environment.
Though it is a client-directed protocol, ULC does not
increase the vulnerability of servers because, even with an
independent caching protocol, a client is still able to abuse
server caches by sending extra requests to servers to keep
its blocks in the server.

Almost all existing file systems use LRU or variants
thereof as their underlying replacement algorithms. ULC
inherits their central data structure, the LRU stack. The
operation cost associated with the stacks is Oð1Þ time with
each reference request. Regarding space cost, our techni-
ques needs 17 bytes (8 bytes for the file identifier and block
offset, 8 bytes for two pointers in a doubly-linked list, and
1 byte for status) for a block in the client, which represents
only 0.2 percent of an 8 Kbyte block. The metadata in the
shared server cache needs an additional 1 or 2 bytes for
recording the block owner. The stack sizes on other levels
except the first one are determined by their cache sizes.
Thus, a server with a 1 GB cache only uses 2.2 MB for its
metadata. The first level cache has to hold uniLRUstack,
whose actual size is determined by the working set size of

the applications running on the client. If needed to save
space, the relatively cold blocks (those with low-level
status) could be removed from the stack without compro-
mising the accuracy of ULC. For example, 8.5 MB of
metadata in the client is sufficient for a working set of up to
4 GB. This is highly affordable in a system seeking to
improve file I/O performance by using large caches.

6 LIMITATIONS OF THE PROTOCOL

While the ULC protocol exhibits impressive performance
improvements in both single-client and multiclient scenar-
ios with a diverse collection of workloads, it does have
limitations. First, ULC does not consider cache coordination
among client caches that are distributed at the same level.
As the aggregate client cache size scales with the number of
clients, there are ample opportunities to improve system
performance by coordinating the client caches. This issue is
addressed in another cooperative cache management
scheme called LAC [16]. Second, we chose LRD-RD as the
locality measure in ULC by comparing several measures
associated with some popular replacement algorithms. It
remains as future work to evaluate other locality measures
that are associated with the advanced replacement algo-
rithms that might improve ULC’s performance. Third, ULC
would require I/O interface protocol enhancements and
software changes for deployment. This poses a challenge to
its acceptance in industry. As a proof of concept, however,
using simulation experiments we have shown that ULC is
an attractive candidate for industry adoption.

7 CONCLUSIONS

Effective management of a multilevel cache hierarchy is
important for good performance of applications for the
following reasons: 1) Increasingly more applications rely on
the hierarchy for their file accesses, 2) the miss penalties are
expensive with the persistent preformance differential
between the cache systems and disk storage systems, and
3) a management protocol without efficient coordination
can seriously underutilize the cache system and limit the
overall system performance. After demonstrating the
relatively poor accuracy and stability of extant locality
measures with representative file access patterns, we
propose the ULC caching protocol. Compared with the
commonly used independent LRU protocol and the other
recently proposed protocols, the ULC protocol demon-
strates distinct performance advantages. Our experimental
results show that ULC is able to consistently and
significantly reduce average block access times as seen by
applications. In addition, we also show that ULC can be
implemented efficiently with Oð1Þ time complexity with
only a few stack operations associated with each reference.

REFERENCES

[1] L.N. Bairavasundaram, M. Sivathanu, A.C. Arpaci-Dusseau, and
R.H. Arpaci-Dusseau, “X-RAY: A Non-Invasive Exclusive Cach-
ing Mechanism for RAIDs,” Proc. 31st Ann. Int’l Symp. Computer
Architecture, June 2004.

[2] I. Ari, A. Amer, R. Gramacy, E.L. Miller, S.A. Brandt, and D.D.E.
Long, “ACME: Adaptive Caching Using Multiple Experts,” Proc.
2002 Workshop Distributed Data and Structures, Mar. 2002.

[3] L.A. Belady, “A Study of Replacement Algorithms for a Virtual-
Storage Computer,” IBM Systems J., vol. 5, no. 2, pp. 78-101, 1966.

[4] M.G. Baker, J.H. Hartman, M.D. Kupfer, K.W. Shirriff, and J.K.
Ousterhout, “Measurements of a Distributed File System,” Proc.
13th ACM Symp. Operating Systems Principles, pp. 198-212, 1991.

JIANG ET AL.: COORDINATED MULTILEVEL BUFFER CACHE MANAGEMENT WITH CONSISTENT ACCESS LOCALITY QUANTIFICATION 13

[5] J.-L. Baer and W.-H. Wang, “On the Inclusion Properties for Multi-
Level Cache Hierarchies,” Proc. 15th Ann. Int’l Symp. Computer
Architecture, pp. 73-80, 1988.

[6] Trace Distribution Center, Performance Evaluation Laboratory,
Brigham Young Univ., http://tds.cs.byu.edu/, 2001.

[7] E.G. Coffman and P.J. Denning, Operating Systems Theory.
Prentice-Hall, 1973.

[8] P. Cao, E.W. Felten, and K. Li, “Application-Controlled File
Caching Policies,” Proc. USENIX Summer 1994 Technical Conf.,
pp. 171-182, 1994.

[9] J. Choi, S. Noh, S. Min, and Y. Cho, “Towards Application/File-
Level Characterization of Block References: A Case for Fine-
Grained Buffer Management,” Proc. 2000 ACM SIGMETRICS Conf.
Measuring and Modeling of Computer Systems, June 2000.

[10] J. Choi, S. Noh, S. Min, and Y. Cho, “An Implementation Study of
a Detection-Based Adaptive Block Replacement Scheme,” Proc.
1999 Ann. USENIX Technical Conf., pp. 239-252, 1999.

[11] Z. Chen, Y. Zhou, and K. Li, “Eviction-Based Placement for
Storage Caches,” Proc. 2003 Ann. USENIX Technical Conf., June
2003.

[12] Z. Chen, Y. Zhang, Y. Zhou, H. Scott, and B. Schiefer, “Empirical
Evaluation of Multi-Level Buffer Cache Collaboration for Storage
System,” Proc. ACM Int’l Conf. Measurement and Modeling of
Computing Systems (SIGMETRICS ’05), June 2005.

[13] P.J. Denning, “The Working Set Model for Program Behavior,”
Comm. ACM, vol. 11, no. 5, May 1968.

[14] M.D. Dahlin, R.Y. Wang, T.E. Anderson, and D.A. Patterson,
“Cooperative Caching: Using Remote Client Memory to Improve
File System Performance,” Proc. First Symp. Operating Systems
Design and Implementation, pp. 267-280, Nov. 1994.

[15] W. Effelsberg and T. Haerder, “Principles of Database Buffer
Management,” ACM Trans. Database Systems, pp. 560-595, Dec.
1984.

[16] S. Jiang, K. Davis, F. Petrini, X. Ding, and X. Zhang, “A Locality-
Aware Cooperative Cache Management Protocol to Improve
Network File System Performance,” Proc. 26th Int’l Conf. Dis-
tributed Computing Systems, July 2006.

[17] T. Johnson and D. Shasha, “2Q: A Low Overhead High
Performance Buffer Management Replacement Algorithm,” Proc.
20th Int’l Conf. VLDB, pp. 439-450, 1994.

[18] S. Jiang and X. Zhang, “LIRS: An Efficient Low Inter-Reference
Recency Set Replacement Policy to Improve Buffer Cache
Performance,” Proc. 2002 ACM SIGMETRICS Conf. Measuring and
Modeling of Computer Systems, June 2002.

[19] J. Kim, J. Choi, J. Kim, S. Noh, S. Min, Y. Cho, and C. Kim, “A
Low-Overhead, High-Performance Unified Buffer Management
Scheme that Exploits Sequential and Looping References,” Proc.
Fourth Symp. Operating Systems Design and Implementation, Oct.
2000.

[20] D. Lee, J. Choi, J. Kim, S. Noh, S. Min, Y. Cho, and C. Kim, “On the
Existence of a Spectrum of Policies that Subsumes the Least
Recently Used (LRU) and Least Frequently Used (LFU) Policies,”
Proc. 1999 ACM SIGMETRICS Conf. Measuring and Modeling of
Computer Systems, May 1999.

[21] D. Lee, S. Noh, S. Min, and Y. Cho, “Efficient Caching Algorithms
for Two-Level Disk Cache Hierarchies,” Proc. Eighth Ann. Symp.
Combinatorial Pattern Matching, 1997.

[22] D. Muntz and P. Honeyman, “Multi-Level Caching in Distributed
File System—or—Your Caching Ain’t Nuthin’ but Trash,” Proc.
USENIX Winter Technical Conf., 1992.

[23] N. Megiddo and D. Modha, “ARC: A Self-Tuning, Low Overhead
Replacement Cache,” Proc. Second USENIX Symp. File and Storage
Technologies (FAST ’03), Mar. 2003.

[24] P. Sarkar and J. Hartman, “Efficient Cooperative Caching Using
Hints,” Proc. Second Symp. Operating Systems Design and Imple-
mentation, 1996.

[25] Y. Smaragdakis, S. Kaplan, and P. Wilson, “EELRU: Simple and
Effective Adaptive Page Replacement,” Proc. 1999 ACM SIG-
METRICS Conf. Measuring and Modeling of Computer Systems,
pp. 122-133, May 1999.

[26] M. Uysal, A. Acharya, and J. Salts, “Requirements of I/O Systems
for Parallel Machines: An Application-Driven Study,” Technical
Report CS-TR-3802, Dept. of Computer Science, Univ. of Mary-
land, College Park, May 1997.

[27] G. Voelker, E. Anderson, T. Kimbrel, M. Feeley, J. Chase, A.
Karlin, and H. Levy, “Implementing Cooperative Prefetching and
Caching in a Globally Managed Memory System,” Proc. 1998 ACM
SIGMETRICS Conf. Measuring and Modeling of Computer Systems,
June 1998.

[28] D.L. Willick, D.L. Eager, and R.B. Bunt, “Disk Cache Replacement
Policies for Network Fileservers,” Proc. 13th Int’l Conf. Distributed
Computing Systems, pp. 2-11, 1993.

[29] J. Wilkes, “The Pantheon Storage-System Simulator,” Technical
Report, HPL-SSP-95-14 rev. 1, HP Lab, May 1996.

[30] C. Williamson, “On Filter Effects in Web Caching Hierarchies,”
ACM Trans. Internet Technology, vol. 2, no. 1, pp. 47-77, Feb. 2002.

[31] T.M. Wong and J. Wilkes, “My Cache or Yours? Making Storage
More Exclusive,” Proc. 2002 Ann. USENIX Technical Conf., June
2002.

[32] Y. Zhu and Y. Hu, “Can Large Disk Built-In Caches Really
Improve System Performance,” Proc. 2002 ACM SIGMETRICS
Conf. Measuring and Modeling of Computer Systems, June 2002.

[33] Y. Zhou, “Memory Management for Networked Servers,” PhD
dissertation, Computer Science Dept., Princeton Univ., Nov. 2000.

[34] Y. Zhou, J.F. Philbin, and K. Li, “The Multi-Queue Replacement
Algorithm for Second Level Buffer Caches,” Proc. 2001 Ann.
USENIX Technical Conf., pp. 91-104, June 2001.

Song Jiang received the BS and MS degrees in
computer science from the University of Science
and Technology of China in 1993 and 1996,
respectively, and received the PhD degree in
computer science from the College of William
and Mary in 2004. He is currently an assistant
professor in the Department of Electrical and
Computer Engineering at Wayne State Univer-
sity. He was a postdoctoral research associate at
Los Alamos National Laboratory from 2004 to

2006, where he developed next-generation operating system capabilities
for large-scale parallel computing systems. He received the S. Park
Graduate Research Award at the College of William and Mary in 2003.
His research interests are in the areas of operating systems, computer
architecture, and distributed systems.

Kei Davis received the MS degree in computa-
tion from the University of Oxford in 1988 and
the PhD degree in computing science from the
University of Glasgow in 1994. He is currently a
technical staff member and team leader of
quantum and classical information sciences at
the Los Alamos National Laboratory. His re-
search interests are in the areas of programming
languages, operating systems, and parallel
computing.

Xiaodong Zhang received the BS degree in
electrical engineering from Beijing Polytechnic
University in 1982 and the PhD degree in
computer science from the University of Color-
ado at Boulder in 1989. He is the Robert M.
Critchfield Professor of Engineering, and chair of
the Department of Computer Science and En-
gineering, at the Ohio State University. He served
as the program director of advanced computa-
tional research at the US National Science

Foundation from 2001 to 2004. He is the associate editor-in-chief of the
IEEE Transactions on Parallel and Distributed Systems and currently
serves on the editorial boards of the IEEE Transactions on Computers
and IEEE Micro. His research interests are in the areas of parallel and
distributed computing and systems, computer architecture, and Internet
computing. He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

14 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 1, JANUARY 2007

