
Orthrus: a Framework for Implementing High-performance
Collective I/O in the Multicore Clusters

Xuechen Zhang
School of Computer Science

Georgia Institute of
Technology

Atlanta, GA, 30332
xczhang@cc.gatech.edu

Jianqiang Ou
ECE Department

Wayne State University
5050 Anthony Wayne Drive

Detroit, MI, 48202, USA
jianqiang.ou@wayne.edu

Kei Davis
CCS Division

Los Alamos National
Laboratory

Los Alamos, NM 87545, USA
kei.davis@lanl.gov

Song Jiang
ECE Department

Wayne State University
5050 Anthony Wayne Drive

Detroit, MI, 48202, USA
sjiang@eng.wayne.edu

ABSTRACT

This paper presents a framework, Orthrus, that can accom-
modate multiple collective-I/O implementations, each opti-
mized for some performance aspects, and dynamically select
the best performing one accordingly to current workload and
system performance bottleneck. We have implemented Or-

thrus in the ROMIO library. Our experimental results with
representative MPI-IO benchmarks show that Orthrus can
significantly improve the performance of collective I/O un-
der various workloads and system scenarios.

Categories and Subject Descriptors

B.4.3 [Interconnections(Subsystems)]: [Parallel I/O]

Keywords

Parallel I/O; parallel file systems; collective I/O.

1. INTRODUCTION
Collective I/O is a technique commonly employed in MPI

programs that coordinates and reorganizes the requests from
the multiple processes of a program before sending them
to data nodes. There are two factors that may compro-
mise its performance. One factor is the potentially high
cost for the data exchange operation required in collective
I/O. The overhead of data exchange can be significant if
a large amount of data needs to be exchanged, especially
when these aggregators and the processes communicating
with them are on different compute nodes. If there are mul-
tiple cores on each node—the common case in today’s HPC
systems—the ideal scenario in terms of minimizing the cost
of data exchange is to have each aggregator only be responsi-
ble for accessing data for processes on the same node and so
have all data exchange occur within individual nodes. How-
ever, such a method for assigning file realms to aggregators
may compromise the efficiency of I/O operations on the data
nodes—the second factor that compromises collective-I/O’s
performance goal.

Copyright is held by the author/owner(s).
HPDC’13, June 17–21, 2013, New York, NY, USA.
ACM 978-1-4503-1910-2/13/06.

This paper describes a general framework Orthrus that
allows multiple collective-I/O implementations, each opti-
mized for one (or more) performance aspect(s), such as I/O
pattern or relative hardware performance characteristics, to
co-exist in a library. Based on a prediction of which would
perform best for the current I/O pattern and system load,
the framework essentially provides MPI programmers a
collective-I/O library that adapts to access pattern changes
and other dynamic system characteristics. A major chal-
lenge for the framework to achieve effectiveness is in the
dynamic prediction of the performance of the various can-
didate implementations in a given scenario. To solve it, we
propose a simple, efficient, accurate, and portable method
for selecting the best performer for a collective-I/O opera-
tion. It does not take any workload or system information
as input and does not involve any complicated modeling or
simulation for performance prediction. The key technique is
to use performance examination, rather than performance
modeling, in the prediction. Each candidate collective-I/O
implementation is given opportunities to demonstrate its
performance, which is recorded for comparison and selec-
tion. By doing so, all of the hard-to-capture information is
reflected in the actual performance of a candidate’s exam-
ination run, which provides an accurate prediction of the
performance that would be exhibited should the candidate
be selected for executing the collective I/O in the near fu-
ture.
2. THE DESIGN OF ORTHRUS

The crux of the Orthrus framework is to know how each
candidate implementation would perform if it were used to
execute a collective-I/O function call. The strategy of Or-

thrus is to apply each candidate implementation on the real
execution of the function call to examine its actual perfor-
mance. Certainly in the library one application-level call
cannot be executed more than once: the overhead would be
excessively large and the caching effect would invalidate the
performance results from all but the first call. However, with
different candidates executing different calls we would need
to ensure that their performance results were comparable
by invoking these candidates within the same workload, i.e.
have the data requested by the calls have the same pattern.

113

In addition, the performance examination period must con-
stitute only a small fraction of the total collective-I/O time
because many candidates might not provide efficient I/O
service. To characterize iteration’s data access pattern Or-

thrus uses a number of factors, including name of accessed
file, number of processes issuing I/O requests, number of
requests, and request sizes, and their relative offsets in the
file. We refer to these factors collectively as the call’s sig-

nature. Two collective I/O calls are considered to have the
same pattern and comparable performance results only when
their signatures are the same.

Orthrus carries out its operations as follows. When a
collective-I/O call is made, first its signature is compared to
the signature of the previous call. If they are not the same,
a new candidate examination period is started. If they are
the same, then either the system is in a candidate examina-
tion period, in which case Orthrus keeps testing a candidate
implementation, or the system uses the currently selected
candidate implementation to execute the call. When a new
candidate examination period is started, calls are serviced
by the candidates in rotation, each for a fixed number of
times (three by default), as long as the signature does not
change. The throughput of each candidate is computed as
an average to minimize the effect of transient changes in the
execution environment. When the examination period ends
without a change in signature, the candidate with the high-
est throughout is selected to execute the calls until the sig-
nature changes. During a regular execution period, even if
the collective-I/O calls do not change their access pattern,
the dynamic system environment, such as communication
and I/O request traffic initiated by other programs, could
change, and accordingly the best performing candidate for
this program might change. To detect such system varia-
tions we monitor the throughput of the selected candidate.
If the deviation of the throughout exceeds a certain thresh-
old (15% by default) of the average recorded in the candidate
examination period the system returns to the examination
mode.

To test our idea we implemented two strategies. One,
core-first, constrains data exchange to be intra-node. In the
current implementation of core-first there is one aggregator
per compute node to represent all the processes running on
that node. We choose as the aggregator the process in that
node requesting the largest amount of data. The processes’
I/O requests are collected by the aggregator, which then
sorts them in the ascending order according to the offsets
of their requested data. The second strategy, disk-first, is
designed to optimize for disk efficiency [3]. It sets up the
same number of aggregators as the number of data nodes,
each collecting and sending requests to one data node. Be-
fore that it sorts the requests as core-first does. However,
disk-first ensures that each data node receives requests in
one well-ordered sequence in the execution of a collective
I/O call, while in core-first each data node receives requests
from multiple (possibly all) aggregators, and the order of re-
quests from different aggregators is essentially random. We
also plug the ROMIO collective [2] implementation into the
Orthrus framework.

3. PERFORMANCE EVALUATION

We evaluate Orthrus when a program using collective I/O
runs on a PVFS2 cluster with 11 compute nodes (8-core
Xeon) and 6 data nodes. The program (Matrix) simulates
the I/O pattern exhibited with access of a large matrix file

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 20 40 60 80 100 120

In
st

a
n

ta
n

e
o

u
s

IO
 T

h
ro

u
g

h
p

u
t

(M
B

/s
)

Iteration Number (X50)

External Comm.
Injected

ROMIO
Core-first
Disk-first
Orthrus

Figure 1: Instantaneous throughput measured for
the four schemes after execution of every 250 iter-
ations. The NPB/FT program starts executing at
the 60th second.

by multiple processes in a block-by-block fashion. To re-
veal Orthrus’s adaptability to the changes in the run-time
environment, from the 60th second of Matrix’s execution we
ran the NPB/FT program [1] to generate inter-node all-to-
all communication. Figure 1 shows the instantaneous I/O
throughput of Matrix, at each multiple of 250 iterations, us-
ing each of the four strategies. Initially Orthrus selects disk-
first. After the injection of the external communication traf-
fic the inter-node bandwidth available to Matrix is reduced
and its data exchange becomes more expensive. Accordingly
the throughputs of ROMIO and disk-first are reduced by up
to 46% and 60%, respectively, and core-first shows its perfor-
mance advantage. As shown in Table 1, during the execution
of the benchmark core-first generates a much smaller num-
ber of IP segments as reported by /proc/net/snmp. When
Orthrus detects the throughout degradation with disk first

it re-evaluates the candidates and responsively switches to
core-first, significantly reducing inter-node data exchange.

Schemes ROMIO core-first disk-first

of In Segs. 701,600 337,257 701,056
of Out Segs. 1,385,008 322,884 1,412,066

Table 1: Average number of incoming and outgoing
IP segments transmitted at each compute node

4. CONCLUSION

We have presented the design and implementation of Or-

thrus, a framework that can host multiple collective-I/O
implementations and adaptively select the one that pro-
vides the highest I/O throughout according to current work-
load and system dynamics. We have implemented Orthrus

in the ROMIO library and tested it with multiple sample
collective-I/O implementations. Our results show that Or-

thrus can significantly improve the throughput of collective
I/O for representative MPI-IO benchmarks.

5. REFERENCES
[1] “FT: Discrete 3D Fast Fourier Transform”, URL:

http://www.nas.nasa.gov/publications/npb.html

[2] R. Thakur, W. Gropp, and E. Lusk, “Data Sieving and
Collective I/O in ROMIO”, In Frontiers’99.

[3] X. Zhang, S. Jiang, and K. Davis, “Making Resonance a
Common Case: A High-Performance Implementation of
Collective I/O on Parallel File Systems”, In IPDPS’09.

114

